R語言 lightgbm 算法優化:不平衡二分類問題(附代碼)

語言: CN / TW / HK


來源:大數據文摘

本文約10000字,建議閲讀10分鐘本文以kaggle比賽的數據為例,為你講解不平衡二分類問題的解決方法。

本案例使用的數據為kaggle中“Santander Customer Satisfaction”比賽的數據。此案例為不平衡二分類問題,目標為最大化auc值(ROC曲線下方面積)。目前此比賽已經結束。

競賽題目鏈接為:

http://www.kaggle.com/c/santander-customer-satisfaction 

1. 建模思路

本文檔採用微軟開源的lightgbm算法進行分類,運行速度極快。具體步驟為:

  • 讀取數據;

  • 並行運算:由於lightgbm包可以通過設置相應參數進行並行運算,因此不再調用doParallel與foreach包進行並行運算;

  • 特徵選擇:使用mlr包提取了99%的chi.square;

  • 調參:逐步調試lgb.cv函數的參數,並多次調試,直到滿意為止;

  • 預測結果:用調試好的參數值構建lightgbm模型,輸出預測結果;本案例所用程序輸出結果的ROC值為0.833386,已超過Private Leaderboard排名第一的結果(0.829072)。

2. lightgbm算法

由於lightgbm算法沒有給出具體的數學公式,因此此處不再介紹,如有需要,請查看github項目網址。

lightgbm算法具體介紹網址:

http://github.com/Microsoft/LightGBM

讀取數據

options(java.parameters = "-Xmx8g") ## 特徵選擇時使用,但是需要在加載包之前設置library(readr)lgb_tr1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/train.csv")lgb_te1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/test.csv")


數據探索

1. 設置並行運算

library(dplyr)library(mlr)library(parallelMap)parallelStartSocket(2)


2. 數據各列初步探索

summarizeColumns(lgb_tr1) %>% View()


3. 處理缺失值

impute missing values by mean and mode
imp_tr1 <- impute(
    as.data.frame(lgb_tr1), 
    classes = list(
        integer = imputeMean(), 
        numeric = imputeMean()
    )
)
imp_te1 <- impute(
    as.data.frame(lgb_te1), 
    classes = list(
        integer = imputeMean(), 
        numeric = imputeMean()
    )
)

處理缺失值後:

summarizeColumns(imp_tr1$data) %>% View()


4. 觀察訓練數據類別的比例–數據類別不平衡

table(lgb_tr1$TARGET)


5. 剔除數據集中的常數列

lgb_tr2 <- removeConstantFeatures(imp_tr1$data)lgb_te2 <- removeConstantFeatures(imp_te1$data)


6. 保留訓練數據集與測試數據及相同的列

tr2_name <- data.frame(tr2_name = colnames(lgb_tr2))te2_name <- data.frame(te2_name = colnames(lgb_te2))tr2_name_inner <- tr2_name %>%     inner_join(te2_name, by = c('tr2_name' = 'te2_name'))TARGET = data.frame(TARGET = lgb_tr2$TARGET)lgb_tr2 <- lgb_tr2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]lgb_te2 <- lgb_te2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]lgb_tr2 <- cbind(lgb_tr2, TARGET)


注:

1)由於本次使用lightgbm算法,故而不對數據進行標準化處理;

2)lightgbm算法運行效率極高,1GB內不進行特徵篩選也可以運行的極快,但是此處進行特徵篩選,以進一步加快運行速率;

3)本案例直接進行特徵篩選,未生成衍生變量,原因為:不知特徵實際意義,不好隨機生成。

特徵篩選–卡方檢驗

library(lightgbm)


1. 試算最大權重值程序,後面將繼續優化

grid_search <- expand.grid(    weight = seq(1, 30, 2)     ## table(lgb_tr1$TARGET)[1] / table(lgb_tr1$TARGET)[2] = 24.27261    ## 故而設定weight在[1, 30]之間)
lgb_rate_1 <- numeric(length = nrow(grid_search))

set.seed(0)

for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr2$TARGET * i + 1) / sum(lgb_tr2$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr2[, 1:300]),         label = lgb_tr2$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc'    )    # 交叉驗證    lgb_tr2_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    lgb_rate_1[i] <- unlist(lgb_tr2_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr2_mod$record_evals$valid$auc$eval))]}

library(ggplot2)grid_search$perf <- lgb_rate_1ggplot(grid_search,aes(x = weight, y = perf)) +     geom_point()


從此圖可知auc值受權重影響不大,在weight=5時達到最大。

2. 特徵選擇

1) 特徵選擇

lgb_tr2$TARGET <- factor(lgb_tr2$TARGET)lgb.task <- makeClassifTask(data = lgb_tr2, target = 'TARGET')lgb.task.smote <- oversample(lgb.task, rate = 5)fv_time <- system.time(    fv <- generateFilterValuesData(        lgb.task.smote,        method = c('chi.squared')        ## 此處可以使用信息增益/卡方檢驗的方法,但是不建議使用隨機森林方法,效率極低        ## 如果有興趣,也可以嘗試IV值方法篩選        ## 特徵工程決定目標值(此處為auc)的上限,可以把特徵篩選方法作為超參數處理    ))


2) 製圖查看

# plotFilterValues(fv)plotFilterValuesGGVIS(fv)


3) 提取99%的chi.squared(lightgbm算法效率極高,因此可以取更多的變量)

注:提取的X%的chi.squared中的X可以作為超參數處理。

fv_data2 <- fv$data %>%     arrange(desc(chi.squared)) %>%     mutate(chi_gain_cul = cumsum(chi.squared) / sum(chi.squared))
fv_data2_filter <- fv_data2 %>% filter(chi_gain_cul <= 0.99)dim(fv_data2_filter) ## 減少了一半的自變量fv_feature <- fv_data2_filter$namelgb_tr3 <- lgb_tr2[, c(fv_feature, 'TARGET')]lgb_te3 <- lgb_te2[, fv_feature]


4) 寫出數據

write_csv(lgb_tr3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')write_csv(lgb_te3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')


算法

lgb_tr <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')lgb_te <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')## 建議lgb_te數據在預測時再讀取,以節約內存library(lightgbm)


1. 調試weight參數

grid_search <- expand.grid(    weight = 1:30)
perf_weight_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc'    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    perf_weight_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
library(ggplot2)grid_search$perf <- perf_weight_1ggplot(grid_search,aes(x = weight, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在weight=4時達到最大,呈遞減趨勢。

2. 調試learning_rate參數

grid_search <- expand.grid(    learning_rate = 2 ^ (-(8:1)))
perf_learning_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_learning_rate_1ggplot(grid_search,aes(x = learning_rate, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在learning_rate=2^(-5) 時達到最大,但是 2^(-(6:3)) 區別極小,故取learning_rate = .125,提高運行速度。

3. 調試num_leaves參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = seq(50, 800, 50))
perf_num_leaves_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_num_leaves_1ggplot(grid_search,aes(x = num_leaves, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在num_leaves=650時達到最大。

4. 調試min_data_in_leaf參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    min_data_in_leaf = 2 ^ (1:7))
perf_min_data_in_leaf_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        min_data_in_leaf = grid_search[i, 'min_data_in_leaf']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_leaf_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_leaf_1ggplot(grid_search,aes(x = min_data_in_leaf, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值對min_data_in_leaf不敏感,因此不做調整。

5. 調試max_bin參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin = 2 ^ (5:10))
perf_max_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_1ggplot(grid_search,aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在max_bin=2^10 時達到最大,需要再次微調max_bin值。

6. 微調max_bin參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin = 100 * (6:15))
perf_max_bin_2 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_2ggplot(grid_search,aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在max_bin=1000時達到最大。

7. 調試min_data_in_bin參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 2 ^ (1:9)    )
perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_bin_1ggplot(grid_search,aes(x = min_data_in_bin, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在min_data_in_bin=8時達到最大,但是變化極其細微,因此不做調整。

8. 調試feature_fraction參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = seq(.5, 1, .02)    )
perf_feature_fraction_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_feature_fraction_1ggplot(grid_search,aes(x = feature_fraction, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在feature_fraction=.62時達到最大,feature_fraction在[.60,.62]之間時,auc值保持穩定,表現較好;從.64開始呈下降趨勢。

9. 調試min_sum_hessian參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = seq(0, .02, .001))
perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_sum_hessian_1ggplot(grid_search,aes(x = min_sum_hessian, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在min_sum_hessian=0.005時達到最大,建議min_sum_hessian取值在[0.002, 0.005]區間,0.005後呈遞減趨勢。

10. 調試lamda參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = seq(0, .01, .002),    lambda_l2 = seq(0, .01, .002))
perf_lamda_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_lamda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_lamda_1ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +     geom_point() +     facet_wrap(~ lambda_l2, nrow = 5)


從此圖可知建議lambda_l1 = 0, lambda_l2 = 0

11. 調試drop_rate參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = seq(0, 1, .1))
perf_drop_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_drop_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_drop_rate_1ggplot(data = grid_search, aes(x = drop_rate, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在drop_rate=0.2時達到最大,在0, .2, .5較好;在[0, 1]變化不大。

12. 調試max_drop參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = seq(1, 10, 2))
perf_max_drop_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_drop_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_drop_1ggplot(data = grid_search, aes(x = max_drop, y = perf)) +     geom_point() +    geom_smooth()


從此圖可知auc值在max_drop=5時達到最大,在[1, 10]區間變化較小。

二次調參

1. 調試weight參數

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_weight_2 <- numeric(length = nrow(grid_search))
for(i in 1:20){    lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[1, 'learning_rate'],        num_leaves = grid_search[1, 'num_leaves'],        max_bin = grid_search[1, 'max_bin'],        min_data_in_bin = grid_search[1, 'min_data_in_bin'],        feature_fraction = grid_search[1, 'feature_fraction'],        min_sum_hessian = grid_search[1, 'min_sum_hessian'],        lambda_l1 = grid_search[1, 'lambda_l1'],        lambda_l2 = grid_search[1, 'lambda_l2'],        drop_rate = grid_search[1, 'drop_rate'],        max_drop = grid_search[1, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    perf_weight_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
library(ggplot2)ggplot(data.frame(num = 1:length(perf_weight_2), perf = perf_weight_2), aes(x = num, y = perf)) +     geom_point() +     geom_smooth()


從此圖可知auc值在weight>=3時auc趨於穩定, weight=7 the max

2. 調試learning_rate參數

grid_search <- expand.grid(    learning_rate = seq(.05, .5, .03),    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_learning_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_learning_rate_1ggplot(data = grid_search, aes(x = learning_rate, y = perf)) +     geom_point() +    geom_smooth()


結論:learning_rate=.11時,auc最大。

3. 調試num_leaves參數


grid_search <- expand.grid(    learning_rate = .11,    num_leaves = seq(100, 800, 50),    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_num_leaves_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_num_leaves_1ggplot(data = grid_search, aes(x = num_leaves, y = perf)) +     geom_point() +    geom_smooth()


結論:num_leaves=200時,auc最大。

4. 調試max_bin參數

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = seq(100, 1500, 100),    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_max_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_1ggplot(data = grid_search, aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()


結論:max_bin=600時,auc最大;400,800也是可接受值。

5. 調試min_data_in_bin參數

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = seq(5, 50, 5),    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_bin_1ggplot(data = grid_search, aes(x = min_data_in_bin, y = perf)) +     geom_point() +    geom_smooth()


結論:min_data_in_bin=45時,auc最大;其中25是可接受值。

6. 調試feature_fraction參數

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = seq(.5, .9, .02),    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_feature_fraction_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_feature_fraction_1ggplot(data = grid_search, aes(x = feature_fraction, y = perf)) +     geom_point() +    geom_smooth()


結論:feature_fraction=.54時,auc最大, .56, .58時也較好。

7. 調試min_sum_hessian參數

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = seq(.001, .008, .0005),    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_sum_hessian_1ggplot(data = grid_search, aes(x = min_sum_hessian, y = perf)) +     geom_point() +    geom_smooth()


結論:min_sum_hessian=0.0065時auc取得最大值,取min_sum_hessian=0.003,0.0055時可接受。

8. 調試lambda參數

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = 0.0065,    lambda_l1 = seq(0, .001, .0002),    lambda_l2 = seq(0, .001, .0002),    drop_rate = .2,    max_drop = 5)
perf_lambda_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 參數    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉驗證    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_lambda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_lambda_1ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +     geom_point() +     facet_wrap(~ lambda_l2, nrow = 5)


結論:lambda與auc整體呈負相關,取lambda_l1=.0002, lambda_l2 = .0004

9. 調試drop_rate參數

結論:drop_rate=.4時取到最大值,.15, .25可接受。

10. 調試max_drop參數

結論:drop_rate=.4時取到最大值,.15, .25可接受。

預測

1. 權重

lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)


2. 訓練數據集

lgb_train <- lgb.Dataset(    data = data.matrix(lgb_tr[, 1:148]),     label = lgb_tr$TARGET,     free_raw_data = FALSE,    weight = lgb_weight)


3. 訓練

# 參數params <- list(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = 0.0065,    lambda_l1 = .0002,    lambda_l2 = .0004,    drop_rate = .4,    max_drop = 14)# 模型lgb_mod <- lightgbm(    params = params,    data = lgb_train,    nrounds = 300,    early_stopping_rounds = 10,    num_threads = 2)# 預測lgb.pred <- predict(lgb_mod, data.matrix(lgb_te))

4. 結果

lgb.pred2 <- matrix(unlist(lgb.pred), ncol = 1)lgb.pred3 <- data.frame(lgb.pred2)

5. 輸出

write.csv(lgb.pred3, "C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb.pred1_tr.csv")


注:此處給在校讀書的朋友一些建議:

1. 在學校學習機器學習算法時,測試所用數據量一般較少,因此可以嘗試大多數算法,大多數的R函數,例如測試隨機森林算法時,可以選擇randomforest包,如果數據量稍微增多,可以設置並行運算,但是如果數據量達到GB級別,並行運算randomforest包也處理不了了,並且內存會溢出;建議使用專業版R中的函數;

2. 學校學習主要針對理論進行學習,測試數據一般較為乾淨,實際數據結構一般更為複雜一些。

編輯:黃繼彥