ZJCTF2021 Reverse-Triple Language

语言: CN / TW / HK

本文为看雪论坛精华文章
看雪论坛作者ID:榆一

比赛的时候由于各种原因没有做出来,由于这道题需要unicorn的知识,对我本身而言是一个很好的学习机会,所以赛后进行了复现。为了写代码方便,本文使用python调用unicorn。

解题过程

拿到题目,发现附近中存在unicorn.dll,猜测这个程序用到了unicorn的一些函数。

先查壳:

无壳,直接拖入IDA找到main函数分析:

初步分析,该程序需要输入两次,分别对应两个验证函数sub_7FF634B112B0和sub_7FF634B11A90,先看看第一个验证函数干了啥:

首先进行规定输入字符串的长度为22,然后有几个等式,这几个等式中的数据可以看出是跟我们输入数据的后16位有关,最终v11的结果要等于0x3EBB0EFAF301FC,猜测后续要进行解方程求解。往下看:

下面就使用了unicorn的函数,uc_open就是c调用unicorn时初始化unicorn的环境,然后第一个参数就是具体环境,第二个参数为具体的模式,我们查一下3和4具体代表啥:

说明初始化的是mips环境,且是x86模式。继续往下看:

从uc_mem_write可以看出mips的代码是从unk_7FF634B13340中提取出来的,大小为272。然后0x11000,0x12000,0x13000地址处填入的应该是mips代码中所需要的数据。其中byte_7FF634B15656和byte_7FF634B1565E是我们所输入的数据中的后16位。

这里有个uc_hook_add的函数,这个是unicorn的hook机制,第三个参数为4,代表unicorn每执行一次模拟的代码,就会触发一次hook机制,第四个参数是回调函数。接下来的操作就是初始化一些寄存器环境,然后进行模拟代码的执行,最后执行完,读取各个寄存器的值,进行验证。sub_7FF634B11000为回调函数,我们跟进去看下:

__int64 __fastcall sub_7FF634B11000(__int64 a1, __int64 a2)
{
__int64 result; // rax
int v5; // [rsp+20h] [rbp-28h] BYREF
int v6; // [rsp+24h] [rbp-24h] BYREF
int v7; // [rsp+28h] [rbp-20h] BYREF
int v8; // [rsp+2Ch] [rbp-1Ch] BYREF
int v9[6]; // [rsp+30h] [rbp-18h] BYREF
int v10; // [rsp+58h] [rbp+10h] BYREF

uc_reg_read(a1, 11i64, &v10);
uc_reg_read(a1, 12i64, &v5);
uc_reg_read(a1, 13i64, &v6);
uc_reg_read(a1, 14i64, &v7);
uc_reg_read(a1, 15i64, &v8);
result = uc_reg_read(a1, 16i64, v9);
switch ( a2 ) // a2是地址
{
case 0x10010i64:
result = uc_reg_read(a1, 11i64, &v10);
if ( v10 != 0x2F2E )
{
printf("You died before you killed anyone.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
case 0x10020i64:
result = uc_reg_read(a1, 12i64, &v5);
if ( v5 != 0x282A )
{
printf("You died when you killed only one.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
case 0x10030i64:
result = uc_reg_read(a1, 13i64, &v6);
if ( v6 != 0x2C42 )
{
printf("Nice! Double kill, but died.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
case 0x10040i64:
result = uc_reg_read(a1, 14i64, &v7);
if ( v7 != 0x2A8A )
{
printf("Awesome! Triple Kill, but interrupted.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
case 0x10050i64:
result = uc_reg_read(a1, 15i64, &v8);
if ( v8 != 0x13E0 )
{
printf("Unimaginable! Quadra Kill, but emm...You know what I want to say.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
case 0x10060i64:
result = uc_reg_read(a1, 16i64, v9);
if ( v9[0] != 0x36D4 )
{
printf("Incredible! Penta Kill, but frankly, you still died.\n");
uc_emu_stop(a1);
exit(-1);
}
return result;
default:
return result;
}
return result;
}

暂时不清楚是用来干啥的。由于不知道mips的具体代码是啥,所以我们先得拿到mips的代码,将mips的二进制码从unk_7FF634B13340提取出来。直接放入ida:

看着难受,而且不能F5看算法,索性我们自己写一个unicorn调试一下这个代码:
from unicorn import *
from unicorn.x86_const import *
from unicorn.arm_const import *
from unicorn.mips_const import *
from capstone import *
with open('mips', 'rb') as file:
#读代码段
MIPS_CODE = file.read() # 读取代码
class UnidbgMips:
def __init__(self):
# x32程序
mu = Uc(UC_ARCH_MIPS, UC_MODE_32)
mu.mem_map(0x10000, 0x200000)
mu.mem_write(0x10000,MIPS_CODE)
mu.mem_write(0x11000,b"zjgcjy\x00")
mu.mem_write(0x12000,b"\xFC\x01\xF3\xFA\x0E\xBB\x3E\x00") #输入假的值
mu.mem_write(0x13000,b"\x00\x00\x00\x00\x00\x00\x00\x00")
mu.reg_write(UC_MIPS_REG_T1, 0x30)#输入假的值
mu.reg_write(UC_MIPS_REG_T2, 0x31)
mu.reg_write(UC_MIPS_REG_T3, 0x32)
mu.reg_write(UC_MIPS_REG_T4, 0x33)
mu.reg_write(UC_MIPS_REG_T5, 0x34)
mu.reg_write(UC_MIPS_REG_T6, 0x35)
mu.hook_add(UC_HOOK_CODE, self.hook_code)
self.mu=mu
# 反汇编引擎
self.md = Cs(CS_ARCH_MIPS, CS_MODE_32)
def hook_code(self, mu, address, size, data):
disasm = self.md.disasm(mu.mem_read(address, size), address)
for i in disasm:
print("0x%x:\t%s\t%s" %(i.address,i.mnemonic,i.op_str))

def start(self):
try:
self.mu.emu_start(0x10000,0x10110)
except:
pass
if __name__ == '__main__':
UnidbgMips().start()

这里使用了下capstone反汇编引擎来识别一下mips的代码。结果:

仔细观察可以发现,这些指令有这重复的操作,四句指令为一组:

将t0寄存器的值进行一个输出,可以发现这四句指令具体的操作就是将0x11000地址处的zjgcjy这串字符,一个个取出,然后跟我们输入值的前6个字符一个个取出进行相乘。得到一个结果,然后我们回去看hook的回调函数:

可以发现0x10010就是我们完成第一组指令后的地址 他这里将t1的值取出判断是不是等于0x2f2e,说明我们输入值的第一个字符*z=0x2F2E,后面可以因此类推,得到前6个字符:
#include<iostream>
using namespace std;
unsigned char flag[50] = { 0 };
void getFirstHalfFlag()
{
memset(flag, 0, 50);
unsigned int res[] = {
0x2F2E,0x282A,0x2C42,0x2A8A,0x13E0,0x36D4
};
unsigned char key[] = "zjgcjy";

for (int i = 0; i < 6; i++) {
flag[i] = res[i] / key[i];
}
printf("%s\r\n", flag);

}
int main()
{

getFirstHalfFlag();
return 0;

}

得到结果:

cann0t

继续分析后续的代码:

发现也是以组为单位的,分别取出0x12000地址中的值和0x13000地址中的值进行一个相加得到结果,然后这两个地址+1取下一个,以此类推得到t1,t2,t3,t4,t5,t6,t7,t8寄存器的值。再回过头来看unicorn执行结束后的判断:

t1,t2,t3,t4,t5,t6,t7,t8寄存器的值进行验证。

再根据这些等式,得到一组方程两元一次方程,这里只写一个举个例子:

x1-y1=0xFC

x1+y1=0xC2

解出x1,y1,以此类推,直接写脚本,由于这里存在溢出问题,所以我采用爆破的方式,准确一点。

#include<iostream>
using namespace std;
unsigned char flag[50] = { 0 };
void getFirstHalfFlag()
{
memset(flag, 0, 50);
unsigned int res[] = {
0x2F2E,0x282A,0x2C42,0x2A8A,0x13E0,0x36D4
};
unsigned char key[] = "zjgcjy";

for (int i = 0; i < 6; i++) {
flag[i] = res[i] / key[i];
}
unsigned char key1[] = {
0xFC,0x1,0xF3,0xFA,0xE,0xBB,0x3E,0x0
};
unsigned char key2[] = {
0xC2,0xC3,0xD7,0xC4,0xDA,0xA5,0xA0,0xBE
};
for (int i = 0; i < 8; i++) {

for (unsigned char a = 32; a <= 126; a++) {
for (unsigned char b = 32; b <= 126; b++) {

unsigned char res1 = a - b;
unsigned char res2 = a + b;

if (res1 == key1[i] && res2 == key2[i]) {
flag[6 + i] = a;
flag[14 + i] = b;

break;
}

}
}
}
printf("%s\r\n", flag);

}
int main()
{

getFirstHalfFlag();
return 0;

}

得到前半个flag:

cann0t_be_t0ocarefu1

查看第二个验证函数sub_7FF634B11A90:

先验证输入的长度为20,再公共sub_7FF634B119F0验证输入的前四个字符。查看一波sub_7FF634B119F0:

发现有一个表,然后有一个异或操作,由于这里有一个移位操作,存在丢失数据,而且就验证四个字符,所以我们直接爆破他。
#include<iostream>
#include<Windows.h>
using namespace std;
unsigned int key[] = {
0x0,0xf26b8303,0xe13b70f7,0x1350f3f4,0xc79a971f,0x35f1141c,0x26a1e7e8,0xd4ca64eb,
0x8ad958cf,0x78b2dbcc,0x6be22838,0x9989ab3b,0x4d43cfd0,0xbf284cd3,0xac78bf27,0x5e133c24,
0x105ec76f,0xe235446c,0xf165b798,0x30e349b,0xd7c45070,0x25afd373,0x36ff2087,0xc494a384,
0x9a879fa0,0x68ec1ca3,0x7bbcef57,0x89d76c54,0x5d1d08bf,0xaf768bbc,0xbc267848,0x4e4dfb4b,
0x20bd8ede,0xd2d60ddd,0xc186fe29,0x33ed7d2a,0xe72719c1,0x154c9ac2,0x61c6936,0xf477ea35,
0xaa64d611,0x580f5512,0x4b5fa6e6,0xb93425e5,0x6dfe410e,0x9f95c20d,0x8cc531f9,0x7eaeb2fa,
0x30e349b1,0xc288cab2,0xd1d83946,0x23b3ba45,0xf779deae,0x5125dad,0x1642ae59,0xe4292d5a,
0xba3a117e,0x4851927d,0x5b016189,0xa96ae28a,0x7da08661,0x8fcb0562,0x9c9bf696,0x6ef07595,
0x417b1dbc,0xb3109ebf,0xa0406d4b,0x522bee48,0x86e18aa3,0x748a09a0,0x67dafa54,0x95b17957,
0xcba24573,0x39c9c670,0x2a993584,0xd8f2b687,0xc38d26c,0xfe53516f,0xed03a29b,0x1f682198,
0x5125dad3,0xa34e59d0,0xb01eaa24,0x42752927,0x96bf4dcc,0x64d4cecf,0x77843d3b,0x85efbe38,
0xdbfc821c,0x2997011f,0x3ac7f2eb,0xc8ac71e8,0x1c661503,0xee0d9600,0xfd5d65f4,0xf36e6f7,
0x61c69362,0x93ad1061,0x80fde395,0x72966096,0xa65c047d,0x5437877e,0x4767748a,0xb50cf789,
0xeb1fcbad,0x197448ae,0xa24bb5a,0xf84f3859,0x2c855cb2,0xdeeedfb1,0xcdbe2c45,0x3fd5af46,
0x7198540d,0x83f3d70e,0x90a324fa,0x62c8a7f9,0xb602c312,0x44694011,0x5739b3e5,0xa55230e6,
0xfb410cc2,0x92a8fc1,0x1a7a7c35,0xe811ff36,0x3cdb9bdd,0xceb018de,0xdde0eb2a,0x2f8b6829,
0x82f63b78,0x709db87b,0x63cd4b8f,0x91a6c88c,0x456cac67,0xb7072f64,0xa457dc90,0x563c5f93,
0x82f63b7,0xfa44e0b4,0xe9141340,0x1b7f9043,0xcfb5f4a8,0x3dde77ab,0x2e8e845f,0xdce5075c,
0x92a8fc17,0x60c37f14,0x73938ce0,0x81f80fe3,0x55326b08,0xa759e80b,0xb4091bff,0x466298fc,
0x1871a4d8,0xea1a27db,0xf94ad42f,0xb21572c,0xdfeb33c7,0x2d80b0c4,0x3ed04330,0xccbbc033,
0xa24bb5a6,0x502036a5,0x4370c551,0xb11b4652,0x65d122b9,0x97baa1ba,0x84ea524e,0x7681d14d,
0x2892ed69,0xdaf96e6a,0xc9a99d9e,0x3bc21e9d,0xef087a76,0x1d63f975,0xe330a81,0xfc588982,
0xb21572c9,0x407ef1ca,0x532e023e,0xa145813d,0x758fe5d6,0x87e466d5,0x94b49521,0x66df1622,
0x38cc2a06,0xcaa7a905,0xd9f75af1,0x2b9cd9f2,0xff56bd19,0xd3d3e1a,0x1e6dcdee,0xec064eed,
0xc38d26c4,0x31e6a5c7,0x22b65633,0xd0ddd530,0x417b1db,0xf67c32d8,0xe52cc12c,0x1747422f,
0x49547e0b,0xbb3ffd08,0xa86f0efc,0x5a048dff,0x8ecee914,0x7ca56a17,0x6ff599e3,0x9d9e1ae0,
0xd3d3e1ab,0x21b862a8,0x32e8915c,0xc083125f,0x144976b4,0xe622f5b7,0xf5720643,0x7198540,
0x590ab964,0xab613a67,0xb831c993,0x4a5a4a90,0x9e902e7b,0x6cfbad78,0x7fab5e8c,0x8dc0dd8f,
0xe330a81a,0x115b2b19,0x20bd8ed,0xf0605bee,0x24aa3f05,0xd6c1bc06,0xc5914ff2,0x37faccf1,
0x69e9f0d5,0x9b8273d6,0x88d28022,0x7ab90321,0xae7367ca,0x5c18e4c9,0x4f48173d,0xbd23943e,
0xf36e6f75,0x105ec76,0x12551f82,0xe03e9c81,0x34f4f86a,0xc69f7b69,0xd5cf889d,0x27a40b9e,
0x79b737ba,0x8bdcb4b9,0x988c474d,0x6ae7c44e,0xbe2da0a5,0x4c4623a6,0x5f16d052,0xad7d5351
};
void getLastHalfFlag()
{
unsigned int v1;
DWORD res = 0xCAFABCBC;
res = ~res;
for (DWORD i = 0x32323232; i <= 0x7E7E7E7E; i++) {
v1 = -1;
unsigned char *cRes = (unsigned char*)&i;
for (int j = 0; j < 4; j++) {
unsigned char value = cRes[j] ^ v1;
v1 = ((v1 >> 8) ^ key[value]);
}

if (res == v1) {
printf("%x\r\n", i);
break;
}

}
}
int main()
{
getLastHalfFlag();
return 0;

}

得到结果为(要等个几秒钟):

0x6e65687转化为字符串"when"

然后继续往下分析:

后面的逻辑主要是验证输入的后16个字符,这里uc_open的第一个参数代码的是ARM架构,然后ARM的代码是从unk_7FF634B139B0开始的,大小为0x400,我们保存下来。偷个懒,用IDA的F5识别出算法。
void __noreturn sub_0()
{
char *v0; // r2
char *v1; // r2
char *v2; // r2
char *v3; // r2
char *v4; // r2
char *v5; // r2
char *v6; // r3
char *v7; // r2
char *v8; // r3
char *v9; // r3
char v10[100]; // [sp+0h] [bp-8Ch] BYREF
char v11[28]; // [sp+64h] [bp-28h] BYREF
int i; // [sp+80h] [bp-Ch]
char *v13; // [sp+84h] [bp-8h]

qmemcpy(v11, ")8FP>6^[email protected]>X*P<G=B)1 ", 24);
v13 = v10;
for ( i = 0; i <= 13; i += 3 ) // 四个为一组
{
v0 = v13++;
*v0 = (*(_BYTE *)(i + 0x21024) >> 2) + 33; // 通过这个得到第i个字符的高6位
v1 = v13++;
*v1 = ((16 * *(_BYTE *)(i + 135204)) & 0x30 | (*(_BYTE *)(i + 135205) >> 4)) + 33;// 这个结果包含了第i个字符的低2位和第i+1个字符的高4位
v2 = v13++;
*v2 = ((4 * *(_BYTE *)(i + 135205)) & 0x3C | (*(_BYTE *)(i + 135206) >> 6)) + 33;// 这个结果包含了第i+1个字符的低4位和第i+2个字符的高两位
v3 = v13++;
*v3 = (*(_BYTE *)(i + 135206) & 0x3F) + 33; // 这个结果包含了第i+2个字符的低6位
}
if ( i <= 15 )
{
v4 = v13++;
*v4 = (*(_BYTE *)(i + 135204) >> 2) + 33; // 通过这个得出一个字符中高6位的值
v5 = v13++;
if ( i == 15 )
{
*v5 = ((16 * MEMORY[0x21033]) & 0x30) + 33;// ((16**(byte*)(i+0x21024))&0x30)+0x21 通过这个计算一个字符中最低两位的值
v6 = v13++;
*v6 = 32;
}
else
{
*v5 = ((16 * *(_BYTE *)(i + 135204)) & 0x30 | (*(_BYTE *)(i + 135205) >> 4)) + 33;
v7 = v13++;
*v7 = ((4 * *(_BYTE *)(i + 135205)) & 0x3C) + 33;
}
v8 = v13++;
*v8 = 32;
}
v9 = v13++;
*v9 = 0;
for ( i = 0; i <= 23 && v10[i] == v11[i]; ++i )
;
JUMPOUT(0x400);
}

算法的大题逻辑能看,但是还是有些东西看不清楚,我们跟前面一样,自己用unicorn写一个调试一下。

from unicorn import *
from unicorn.x86_const import *
from unicorn.arm_const import *
from unicorn.mips_const import *
from capstone import *
with open('Arm', 'rb') as file:
ARM_CODE=file.read()
class UnidbgArm:
def __init__(self):
# x32程序
mu = Uc(UC_ARCH_ARM, UC_MODE_ARM)
mu.mem_map(0x200000, 0x200000)
mu.mem_map(0x10000,0x1000)
mu.mem_write(0x200000,ARM_CODE)
mu.mem_map(0x20000,0x10000)
mu.mem_write(0x21024,b"1234567891234567\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00") #输入假的数据
mu.reg_write(UC_ARM_REG_SP,0x11000)

mu.hook_add(UC_HOOK_CODE, self.hook_code)
self.mu=mu
# 反汇编引擎
self.md = Cs(CS_ARCH_ARM,UC_MODE_ARM)

def hook_code(self, mu,address, size, data):

if address==0x200010 or address==0x200058:
v5=mu.reg_read(UC_ARM_REG_R3)
v5+=15
mu.reg_write(UC_ARM_REG_R3,v5)
elif address==0x200018:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^= 0x6F
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200020 or address==0x200040:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 -=12
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200028:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^= 0x12
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200030 or address==0x200070:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 -=5
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200038:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 += 33
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200048:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^= 0xD
mu.reg_write(UC_ARM_REG_R3, v5)
elif address==0x200050:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 -=3
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200060:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^= 0x68
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200068:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^= 0xA
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200078:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 -= 33
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200080:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 +=48
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200088:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^=0x18
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200090:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 +=2
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x200098:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 -=16
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x2000A0:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^=0x1B
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x2000A8:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 +=6
mu.reg_write(UC_ARM_REG_R3, v5)
elif address == 0x2000B0:
v5 = mu.reg_read(UC_ARM_REG_R3)
v5 ^=0x13
mu.reg_write(UC_ARM_REG_R3, v5)

# if(mu.reg_read(UC_ARM_REG_R3)>=32 and mu.reg_read(UC_ARM_REG_R3)<=126):
# print(chr(mu.reg_read(UC_ARM_REG_R3)))
# else:
print("r3:0x%x r2:0x%x r1:0x%x r0:0x%x"%(mu.reg_read(UC_ARM_REG_R3),mu.reg_read(UC_ARM_REG_R2),mu.reg_read(UC_ARM_REG_R1),mu.reg_read(UC_ARM_REG_R0)))

disasm = self.md.disasm(mu.mem_read(address, size), address)
for i in disasm:
print("0x%x:\t%s\t%s" %(i.address,i.mnemonic,i.op_str))


def start(self):
try:
self.mu.emu_start(0x200000, 0x200400)
print(self.mu.reg_read(66))
except:
pass
if __name__ == '__main__':
#UnidbgMips().start()
UnidbgArm().start()

发现这里有一些常量存到了一个连续的地址中,对应IDA就是以下一些字符:

但是他在程序中注册了一个hook回调,我们看一下回调里干了啥:

对v5进行了一些操作,而v5对应的就是代码里的r3寄存器,说明该hook代码将IDA中识别的字符串进行了改变,手动提取得到:
unsigned char res[] = {
0x38,0x57,0x3A,0x42,0x39,0x57,0x52,0x4F,0x3A,0x56,0x5E,0x4A,0x39,0x37,0x5A,0x48,0x3E,0x37,0x26,0x48,0x3A,0x31
};

接下来就是对下面算法的逆向求解:

他将我们输入的字符进行了一些拆分,然后存起来。通过自己写的unicorn调试输出一些寄存器的值,得到函数最后将拆分得到的结果值和上面的那串res里的值进行比对,直接写脚本求解:
#include<iostream>
#include<Windows.h>
using namespace std;
unsigned char flag[50] = { 0 };
unsigned int key[] = {
0x0,0xf26b8303,0xe13b70f7,0x1350f3f4,0xc79a971f,0x35f1141c,0x26a1e7e8,0xd4ca64eb,
0x8ad958cf,0x78b2dbcc,0x6be22838,0x9989ab3b,0x4d43cfd0,0xbf284cd3,0xac78bf27,0x5e133c24,
0x105ec76f,0xe235446c,0xf165b798,0x30e349b,0xd7c45070,0x25afd373,0x36ff2087,0xc494a384,
0x9a879fa0,0x68ec1ca3,0x7bbcef57,0x89d76c54,0x5d1d08bf,0xaf768bbc,0xbc267848,0x4e4dfb4b,
0x20bd8ede,0xd2d60ddd,0xc186fe29,0x33ed7d2a,0xe72719c1,0x154c9ac2,0x61c6936,0xf477ea35,
0xaa64d611,0x580f5512,0x4b5fa6e6,0xb93425e5,0x6dfe410e,0x9f95c20d,0x8cc531f9,0x7eaeb2fa,
0x30e349b1,0xc288cab2,0xd1d83946,0x23b3ba45,0xf779deae,0x5125dad,0x1642ae59,0xe4292d5a,
0xba3a117e,0x4851927d,0x5b016189,0xa96ae28a,0x7da08661,0x8fcb0562,0x9c9bf696,0x6ef07595,
0x417b1dbc,0xb3109ebf,0xa0406d4b,0x522bee48,0x86e18aa3,0x748a09a0,0x67dafa54,0x95b17957,
0xcba24573,0x39c9c670,0x2a993584,0xd8f2b687,0xc38d26c,0xfe53516f,0xed03a29b,0x1f682198,
0x5125dad3,0xa34e59d0,0xb01eaa24,0x42752927,0x96bf4dcc,0x64d4cecf,0x77843d3b,0x85efbe38,
0xdbfc821c,0x2997011f,0x3ac7f2eb,0xc8ac71e8,0x1c661503,0xee0d9600,0xfd5d65f4,0xf36e6f7,
0x61c69362,0x93ad1061,0x80fde395,0x72966096,0xa65c047d,0x5437877e,0x4767748a,0xb50cf789,
0xeb1fcbad,0x197448ae,0xa24bb5a,0xf84f3859,0x2c855cb2,0xdeeedfb1,0xcdbe2c45,0x3fd5af46,
0x7198540d,0x83f3d70e,0x90a324fa,0x62c8a7f9,0xb602c312,0x44694011,0x5739b3e5,0xa55230e6,
0xfb410cc2,0x92a8fc1,0x1a7a7c35,0xe811ff36,0x3cdb9bdd,0xceb018de,0xdde0eb2a,0x2f8b6829,
0x82f63b78,0x709db87b,0x63cd4b8f,0x91a6c88c,0x456cac67,0xb7072f64,0xa457dc90,0x563c5f93,
0x82f63b7,0xfa44e0b4,0xe9141340,0x1b7f9043,0xcfb5f4a8,0x3dde77ab,0x2e8e845f,0xdce5075c,
0x92a8fc17,0x60c37f14,0x73938ce0,0x81f80fe3,0x55326b08,0xa759e80b,0xb4091bff,0x466298fc,
0x1871a4d8,0xea1a27db,0xf94ad42f,0xb21572c,0xdfeb33c7,0x2d80b0c4,0x3ed04330,0xccbbc033,
0xa24bb5a6,0x502036a5,0x4370c551,0xb11b4652,0x65d122b9,0x97baa1ba,0x84ea524e,0x7681d14d,
0x2892ed69,0xdaf96e6a,0xc9a99d9e,0x3bc21e9d,0xef087a76,0x1d63f975,0xe330a81,0xfc588982,
0xb21572c9,0x407ef1ca,0x532e023e,0xa145813d,0x758fe5d6,0x87e466d5,0x94b49521,0x66df1622,
0x38cc2a06,0xcaa7a905,0xd9f75af1,0x2b9cd9f2,0xff56bd19,0xd3d3e1a,0x1e6dcdee,0xec064eed,
0xc38d26c4,0x31e6a5c7,0x22b65633,0xd0ddd530,0x417b1db,0xf67c32d8,0xe52cc12c,0x1747422f,
0x49547e0b,0xbb3ffd08,0xa86f0efc,0x5a048dff,0x8ecee914,0x7ca56a17,0x6ff599e3,0x9d9e1ae0,
0xd3d3e1ab,0x21b862a8,0x32e8915c,0xc083125f,0x144976b4,0xe622f5b7,0xf5720643,0x7198540,
0x590ab964,0xab613a67,0xb831c993,0x4a5a4a90,0x9e902e7b,0x6cfbad78,0x7fab5e8c,0x8dc0dd8f,
0xe330a81a,0x115b2b19,0x20bd8ed,0xf0605bee,0x24aa3f05,0xd6c1bc06,0xc5914ff2,0x37faccf1,
0x69e9f0d5,0x9b8273d6,0x88d28022,0x7ab90321,0xae7367ca,0x5c18e4c9,0x4f48173d,0xbd23943e,
0xf36e6f75,0x105ec76,0x12551f82,0xe03e9c81,0x34f4f86a,0xc69f7b69,0xd5cf889d,0x27a40b9e,
0x79b737ba,0x8bdcb4b9,0x988c474d,0x6ae7c44e,0xbe2da0a5,0x4c4623a6,0x5f16d052,0xad7d5351
};
void getFirstHalfFlag()
{
memset(flag, 0, 50);
unsigned int res[] = {
0x2F2E,0x282A,0x2C42,0x2A8A,0x13E0,0x36D4
};
unsigned char key[] = "zjgcjy";

for (int i = 0; i < 6; i++) {
flag[i] = res[i] / key[i];
}
printf("%s\r\n", flag);
unsigned char key1[] = {
0xFC,0x1,0xF3,0xFA,0xE,0xBB,0x3E,0x0
};
unsigned char key2[] = {
0xC2,0xC3,0xD7,0xC4,0xDA,0xA5,0xA0,0xBE
};
for (int i = 0; i < 8; i++) {

for (unsigned char a = 32; a <= 126; a++) {
for (unsigned char b = 32; b <= 126; b++) {

unsigned char res1 = a - b;
unsigned char res2 = a + b;

if (res1 == key1[i] && res2 == key2[i]) {
flag[6 + i] = a;
flag[14 + i] = b;

break;
}

}
}


}
printf("%s\r\n", flag);
}

void getLastHalfFlag()
{

//直接爆破 爆出来是 when
/*
unsigned int v1;
DWORD res = 0xCAFABCBC;
res = ~res;
for (DWORD i = 0x32323232; i <= 0x7E7E7E7E; i++) {
v1 = -1;
unsigned char *cRes = (unsigned char*)&i;
for (int j = 0; j < 4; j++) {
unsigned char value = cRes[j] ^ v1;
v1 = ((v1 >> 8) ^ key[value]);
}

if (res == v1) {
printf("%x\r\n", i);
break;
}

}
*/

memcpy(&flag[22], "when", 4);
printf("%s\r\n", flag);
unsigned char res[] = {
0x38,0x57,0x3A,0x42,0x39,0x57,0x52,0x4F,0x3A,0x56,0x5E,0x4A,0x39,0x37,0x5A,
0x48,0x3E,0x37,0x26,0x48,0x3A,0x31
};
unsigned char chr1 = 0;
unsigned char chr2 = 0;
unsigned char chr3 = 0;
int total = 26;
for (int i = 0; i < 18; i += 4) {
chr1 = (res[i] - 0x21) << 2;
chr1 = ((res[i + 1] - 0x21) >> 4) | chr1;
chr2 = ((res[i + 1] - 0x21) << 4);
chr2 = ((res[i + 2] - 0x21) >>2) | chr2;
chr3 = res[i + 3] - 0x21;
chr3 = ((res[i + 2] - 0x21) << 6) | chr3;
flag[total++] = chr1;
flag[total++] = chr2;
flag[total++] = chr3;
}

chr1= (res[20] - 0x21) << 2;
chr1 = chr1 | ((res[21] - 0x21) >> 4);
flag[total] = chr1;
printf("%s\r\n", flag);


}

int main()
{

getFirstHalfFlag();
getLastHalfFlag();
return 0;

}

得到完整flag:

cann0t_be_t0o_carefu1_when_faclng_ianguage

看雪ID:榆一

http://bbs.pediy.com/user-home-923269.htm

*本文由看雪论坛 榆一 原创,转载请注明来自看雪社区

#

往期推荐

1. Docker-remoter-api渗透

2. Writeup-ROP Emporium fluff

3. Windows内核-句柄

4. APT28样本超详细分析

5. CVE-2016-0095提权漏洞学习笔记

6. java序列化与反序列化

球分享

球点赞

球在看

点击“阅读原文”,了解更多!