如何下載pytorch的歷史版本?
網頁地址:http://pytorch.org/get-started/previous-versions/
INSTALLING PREVIOUS VERSIONS OF PYTORCH
We’d prefer you install the latest version, but old binaries and installation instructions are provided below for your convenience.
COMMANDS FOR VERSIONS >= 1.0.0
v1.6.0
Conda
OSX
```
conda
conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.6.0 torchvision==0.7.0
Linux and Windows
```
CUDA 10.2
pip install torch==1.6.0 torchvision==0.7.0
CUDA 10.1
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.6.0+cu92 torchvision==0.7.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.5.1
Conda
OSX
```
conda
conda install pytorch==1.5.1 torchvision==0.6.1 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.5.1 torchvision==0.6.1
Linux and Windows
```
CUDA 10.2
pip install torch==1.5.1 torchvision==0.6.1
CUDA 10.1
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.5.1+cu92 torchvision==0.6.1+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.5.0
Conda
OSX
```
conda
conda install pytorch==1.5.0 torchvision==0.6.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.5.0 torchvision==0.6.0
Linux and Windows
```
CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
CUDA 10.1
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.5.0+cu92 torchvision==0.6.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.4.0
Conda
OSX
```
conda
conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
CPU Only
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.4.0 torchvision==0.5.0
Linux and Windows
```
CUDA 10.1
pip install torch==1.4.0 torchvision==0.5.0
CUDA 9.2
pip install torch==1.4.0+cu92 torchvision==0.5.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.2.0
Conda
OSX
```
conda
conda install pytorch==1.2.0 torchvision==0.4.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.2.0 torchvision==0.4.0
Linux and Windows
```
CUDA 10.0
pip install torch==1.2.0 torchvision==0.4.0
CUDA 9.2
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.1.0
Conda
OSX
```
conda
conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch ```
Linux and Windows
```
CUDA 9.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
CUDA 10.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.1.0 torchvision==0.3.0
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
v1.0.1
Conda
OSX
```
conda
conda install pytorch==1.0.1 torchvision==0.2.2 -c pytorch ```
Linux and Windows
```
CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
CUDA 10.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.0.1 torchvision==0.2.2
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
v1.0.0
Conda
OSX
```
conda
conda install pytorch==1.0.0 torchvision==0.2.1 -c pytorch ```
Linux and Windows
```
CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 -c pytorch
CUDA 8.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch
CPU Only
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.0.0 torchvision==0.2.1
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CUDA 8.0
Download and install wheel from http://download.pytorch.org/whl/cu80/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
COMMANDS FOR VERSIONS < 1.0.0
Via conda
This should be used for most previous macOS version installs.
To install a previous version of PyTorch via Anaconda or Miniconda, replace “0.4.1” in the following commands with the desired version (i.e., “0.2.0”).
Installing with CUDA 9
conda install pytorch=0.4.1 cuda90 -c pytorch
or
conda install pytorch=0.4.1 cuda92 -c pytorch
Installing with CUDA 8
conda install pytorch=0.4.1 cuda80 -c pytorch
Installing with CUDA 7.5
conda install pytorch=0.4.1 cuda75 -c pytorch
Installing without CUDA
conda install pytorch=0.4.1 -c pytorch
From source
It is possible to checkout an older version of PyTorch and build it. You can list tags in PyTorch git repository with git tag
and checkout a particular one (replace ‘0.1.9’ with the desired version) with
git checkout v0.1.9
Follow the install from source instructions in the README.md of the PyTorch checkout.
Via pip
Download the whl
file with the desired version from the following html pages:
- http://download.pytorch.org/whl/cpu/torch_stable.html # CPU-only build
- http://download.pytorch.org/whl/cu80/torch_stable.html # CUDA 8.0 build
- http://download.pytorch.org/whl/cu90/torch_stable.html # CUDA 9.0 build
- http://download.pytorch.org/whl/cu92/torch_stable.html # CUDA 9.2 build
- http://download.pytorch.org/whl/cu100/torch_stable.html # CUDA 10.0 build
Then, install the file with pip install [downloaded file]
Note: most pytorch versions are available only for specific CUDA versions. For example pytorch=1.0.1 is not available for CUDA 9.2
(Old) PyTorch Linux binaries compiled with CUDA 7.5
These predate the html page above and have to be manually installed by downloading the wheel file and pip install downloaded_file
- cu75/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp27-cp27m-linux_x86_64.whl
- cu75/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.1.12.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.12.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.6.post22-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.6.post22-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
Windows binaries
- cpu/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu80/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu90/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu100/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu80/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu90/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu100/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cpu/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu80/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu90/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu100/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cpu/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu80/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu90/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu92/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cpu/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu80/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu90/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu92/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cpu/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu80/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu90/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu92/torch-0.4.1-cp37-cp37m-win_amd64.whl
Mac and misc. binaries
For recent macOS binaries, use conda
:
e.g.,
conda install pytorch=0.4.1 cuda90 -c pytorch
conda install pytorch=0.4.1 cuda92 -c pytorch
conda install pytorch=0.4.1 cuda80 -c pytorch
conda install pytorch=0.4.1 -c pytorch
# No CUDA
- torchvision-0.1.6-py3-none-any.whl
- torchvision-0.1.6-py2-none-any.whl
- torch-1.0.0-cp37-none-macosx_10_7_x86_64.whl
- torch-1.0.0-cp36-none-macosx_10_7_x86_64.whl
- torch-1.0.0-cp35-none-macosx_10_6_x86_64.whl
- torch-1.0.0-cp27-none-macosx_10_6_x86_64.whl
- torch-0.4.0-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.4.0-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.4.0-cp27-none-macosx_10_7_x86_64.whl
- torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.3.1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.3.1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.10.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.10.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.10.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.9.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.9.post2-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.9.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.9.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.9.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.9.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.8.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.8.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.8.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.7.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.7.post2-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.7.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.6.post22-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.6.post22-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
- torch-0.1.6.post17-cp35-cp35m-linux_x86_64.whl
- torch-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl
- torch-0.1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1-cp27-cp27m-macosx_10_6_x86_64.whl
- torch_cuda80-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- torch_cuda80-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
- torch_cuda80-0.1.6.post17-cp35-cp35m-linux_x86_64.whl
- torch_cuda80-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl
- YoloV5實戰:手把手教物體檢測——YoloV5
- 基於阿里Semantatic Human Matting算法,實現精細化人物摳圖
- PPv3-OCR自定義數據從訓練到部署
- 如何下載pytorch的歷史版本?
- WinForm——Button總結
- WinForm——MDI窗體
- 升級 pip
- 將8位的tif圖片改為png圖片
- RepLKNet實戰:使用RepLKNet實現對植物幼苗的分類(非官方)(二)
- 關於OpenCV imread和imdecode讀取圖片是BGR的證明
- opencv讀取圖片通道以及顯示
- 萬字整理聯邦學習系統架構設計參考
- 編譯器堆空間不足
- 【圖像分類】實戰——使用EfficientNetV2實現圖像分類(Pytorch)
- MMDetection實戰:MMDetection訓練與測試
- UNet語義分割實戰:使用UNet實現對人物的摳圖
- MobileVIT實戰:使用MobileVIT實現圖像分類
- SwinIR實戰:如何使用SwinIR和預訓練模型實現圖片的超分
- 【圖像分類】手撕ResNet——復現ResNet(Pytorch)
- Deeplab實戰:使用deeplabv3實現對人物的摳圖