如何下载pytorch的历史版本?
网页地址:http://pytorch.org/get-started/previous-versions/
INSTALLING PREVIOUS VERSIONS OF PYTORCH
We’d prefer you install the latest version, but old binaries and installation instructions are provided below for your convenience.
COMMANDS FOR VERSIONS >= 1.0.0
v1.6.0
Conda
OSX
```
conda
conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.6.0 torchvision==0.7.0
Linux and Windows
```
CUDA 10.2
pip install torch==1.6.0 torchvision==0.7.0
CUDA 10.1
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.6.0+cu92 torchvision==0.7.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.5.1
Conda
OSX
```
conda
conda install pytorch==1.5.1 torchvision==0.6.1 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.5.1 torchvision==0.6.1
Linux and Windows
```
CUDA 10.2
pip install torch==1.5.1 torchvision==0.6.1
CUDA 10.1
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.5.1+cu92 torchvision==0.6.1+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.5.0
Conda
OSX
```
conda
conda install pytorch==1.5.0 torchvision==0.6.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 -c pytorch
CPU Only
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.5.0 torchvision==0.6.0
Linux and Windows
```
CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
CUDA 10.1
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f http://download.pytorch.org/whl/torch_stable.html
CUDA 9.2
pip install torch==1.5.0+cu92 torchvision==0.6.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.4.0
Conda
OSX
```
conda
conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch
CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
CPU Only
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.4.0 torchvision==0.5.0
Linux and Windows
```
CUDA 10.1
pip install torch==1.4.0 torchvision==0.5.0
CUDA 9.2
pip install torch==1.4.0+cu92 torchvision==0.5.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.2.0
Conda
OSX
```
conda
conda install pytorch==1.2.0 torchvision==0.4.0 -c pytorch ```
Linux and Windows
```
CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.2.0 torchvision==0.4.0
Linux and Windows
```
CUDA 10.0
pip install torch==1.2.0 torchvision==0.4.0
CUDA 9.2
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f http://download.pytorch.org/whl/torch_stable.html
CPU only
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f http://download.pytorch.org/whl/torch_stable.html ```
v1.1.0
Conda
OSX
```
conda
conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch ```
Linux and Windows
```
CUDA 9.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
CUDA 10.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.1.0 torchvision==0.3.0
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
v1.0.1
Conda
OSX
```
conda
conda install pytorch==1.0.1 torchvision==0.2.2 -c pytorch ```
Linux and Windows
```
CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
CUDA 10.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 -c pytorch
CPU Only
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.0.1 torchvision==0.2.2
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
v1.0.0
Conda
OSX
```
conda
conda install pytorch==1.0.0 torchvision==0.2.1 -c pytorch ```
Linux and Windows
```
CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 -c pytorch
CUDA 8.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch
CPU Only
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly -c pytorch ```
Wheel
OSX
pip install torch==1.0.0 torchvision==0.2.1
Linux and Windows
```
CUDA 10.0
Download and install wheel from http://download.pytorch.org/whl/cu100/torch_stable.html
CUDA 9.0
Download and install wheel from http://download.pytorch.org/whl/cu90/torch_stable.html
CUDA 8.0
Download and install wheel from http://download.pytorch.org/whl/cu80/torch_stable.html
CPU only
Download and install wheel from http://download.pytorch.org/whl/cpu/torch_stable.html ```
COMMANDS FOR VERSIONS < 1.0.0
Via conda
This should be used for most previous macOS version installs.
To install a previous version of PyTorch via Anaconda or Miniconda, replace “0.4.1” in the following commands with the desired version (i.e., “0.2.0”).
Installing with CUDA 9
conda install pytorch=0.4.1 cuda90 -c pytorch
or
conda install pytorch=0.4.1 cuda92 -c pytorch
Installing with CUDA 8
conda install pytorch=0.4.1 cuda80 -c pytorch
Installing with CUDA 7.5
conda install pytorch=0.4.1 cuda75 -c pytorch
Installing without CUDA
conda install pytorch=0.4.1 -c pytorch
From source
It is possible to checkout an older version of PyTorch and build it. You can list tags in PyTorch git repository with git tag
and checkout a particular one (replace ‘0.1.9’ with the desired version) with
git checkout v0.1.9
Follow the install from source instructions in the README.md of the PyTorch checkout.
Via pip
Download the whl
file with the desired version from the following html pages:
- http://download.pytorch.org/whl/cpu/torch_stable.html # CPU-only build
- http://download.pytorch.org/whl/cu80/torch_stable.html # CUDA 8.0 build
- http://download.pytorch.org/whl/cu90/torch_stable.html # CUDA 9.0 build
- http://download.pytorch.org/whl/cu92/torch_stable.html # CUDA 9.2 build
- http://download.pytorch.org/whl/cu100/torch_stable.html # CUDA 10.0 build
Then, install the file with pip install [downloaded file]
Note: most pytorch versions are available only for specific CUDA versions. For example pytorch=1.0.1 is not available for CUDA 9.2
(Old) PyTorch Linux binaries compiled with CUDA 7.5
These predate the html page above and have to be manually installed by downloading the wheel file and pip install downloaded_file
- cu75/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl
- cu75/torch-0.3.0.post4-cp27-cp27m-linux_x86_64.whl
- cu75/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post3-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post2-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp36-cp36m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp35-cp35m-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp27-cp27mu-manylinux1_x86_64.whl
- cu75/torch-0.2.0.post1-cp27-cp27m-manylinux1_x86_64.whl
- cu75/torch-0.1.12.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.12.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.12.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.11.post5-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.11.post4-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.10.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.10.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.9.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.9.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.8.post1-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp36-cp36m-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.7.post2-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.6.post22-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.6.post22-cp27-none-linux_x86_64.whl
- cu75/torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- cu75/torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
Windows binaries
- cpu/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu80/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu90/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cu100/torch-1.0.0-cp35-cp35m-win_amd64.whl
- cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu80/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu90/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cu100/torch-1.0.0-cp36-cp36m-win_amd64.whl
- cpu/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu80/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu90/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cu100/torch-1.0.0-cp37-cp37m-win_amd64.whl
- cpu/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu80/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu90/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cu92/torch-0.4.1-cp35-cp35m-win_amd64.whl
- cpu/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu80/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu90/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cu92/torch-0.4.1-cp36-cp36m-win_amd64.whl
- cpu/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu80/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu90/torch-0.4.1-cp37-cp37m-win_amd64.whl
- cu92/torch-0.4.1-cp37-cp37m-win_amd64.whl
Mac and misc. binaries
For recent macOS binaries, use conda
:
e.g.,
conda install pytorch=0.4.1 cuda90 -c pytorch
conda install pytorch=0.4.1 cuda92 -c pytorch
conda install pytorch=0.4.1 cuda80 -c pytorch
conda install pytorch=0.4.1 -c pytorch
# No CUDA
- torchvision-0.1.6-py3-none-any.whl
- torchvision-0.1.6-py2-none-any.whl
- torch-1.0.0-cp37-none-macosx_10_7_x86_64.whl
- torch-1.0.0-cp36-none-macosx_10_7_x86_64.whl
- torch-1.0.0-cp35-none-macosx_10_6_x86_64.whl
- torch-1.0.0-cp27-none-macosx_10_6_x86_64.whl
- torch-0.4.0-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.4.0-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.4.0-cp27-none-macosx_10_7_x86_64.whl
- torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.3.1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.3.1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.3.0.post4-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post3-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.2.0.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.12.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.12.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.11.post5-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp35-cp35m-macosx_10_7_x86_64.whl
- torch-0.1.11.post4-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.10.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.10.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.10.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.9.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.9.post2-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.9.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.9.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.9.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.9.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.8.post1-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.8.post1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.8.post1-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.7.post2-cp36-cp36m-macosx_10_7_x86_64.whl
- torch-0.1.7.post2-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.7.post2-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.6.post22-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1.6.post22-cp27-none-macosx_10_7_x86_64.whl
- torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
- torch-0.1.6.post17-cp35-cp35m-linux_x86_64.whl
- torch-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl
- torch-0.1-cp35-cp35m-macosx_10_6_x86_64.whl
- torch-0.1-cp27-cp27m-macosx_10_6_x86_64.whl
- torch_cuda80-0.1.6.post20-cp35-cp35m-linux_x86_64.whl
- torch_cuda80-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl
- torch_cuda80-0.1.6.post17-cp35-cp35m-linux_x86_64.whl
- torch_cuda80-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl
- YoloV5实战:手把手教物体检测——YoloV5
- 基于阿里Semantatic Human Matting算法,实现精细化人物抠图
- PPv3-OCR自定义数据从训练到部署
- 如何下载pytorch的历史版本?
- WinForm——Button总结
- WinForm——MDI窗体
- 升级 pip
- 将8位的tif图片改为png图片
- RepLKNet实战:使用RepLKNet实现对植物幼苗的分类(非官方)(二)
- 关于OpenCV imread和imdecode读取图片是BGR的证明
- opencv读取图片通道以及显示
- 万字整理联邦学习系统架构设计参考
- 编译器堆空间不足
- 【图像分类】实战——使用EfficientNetV2实现图像分类(Pytorch)
- MMDetection实战:MMDetection训练与测试
- UNet语义分割实战:使用UNet实现对人物的抠图
- MobileVIT实战:使用MobileVIT实现图像分类
- SwinIR实战:如何使用SwinIR和预训练模型实现图片的超分
- 【图像分类】手撕ResNet——复现ResNet(Pytorch)
- Deeplab实战:使用deeplabv3实现对人物的抠图