Android進階寶典 -- 從源碼角度全面分析Frgament原理
在Android中,真正作為承載頁面級別的組件就兩個:Activity和Fragment。説起Activity,我想夥伴們都非常熟悉,如果想新建一個頁面,那麼就創建一個Activity,這個是傳統的開發思想。
夥伴們可以想一想,當一個項目成規模以後,Activity的量級達到了50+ or 100+,這個時候頁面之間的跳轉就需要路由來管理,如果想寫startActivity寫到吐,那麼也沒問題。那麼有沒有好的方式能夠非常方便地管理頁面,而且能夠用最少量的Activity,建議夥伴們去了解下Navigation,其內部有一套Fragment的管理機制。
為啥要出這篇Fragment核心原理分析,就是因為在項目中使用Navigation的時候遇到了一些問題,但是夥伴們可能對於Fragment的原理不是那麼瞭解,像生命週期、Fragment事務管理、回退棧等,那麼在使用Navigation的時候,如果想要Hook Navigation源碼,不知道如何處理Fragment之間的跳轉邏輯,那麼看了這篇文章,可能會有所幫助。
1 Fragment基礎概念
1.1 Fragment的生命週期
首先我們先要知道,Fragment是不能像Activity那樣獨立存在,你可以認為它是一個View,它必須要依賴於Activity存在,而且是受Activity的生命週期影響,從而改變自身的生命週期,反之它沒有影響Activity生命週期的能力。
那麼我們從源碼的角度看一下,Activity是如何影響Fragment的生命週期的,然後從實例出發驗證一下與源碼是否一致。那麼我們從FragmentActivity的onCreate方法開始,當Activity調用onCreate方法的時候,就會回調這個方法。
```java @Override protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState);
mFragmentLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
mFragments.dispatchCreate();
} ```
首先我們看一下,mFragments是什麼,它是一個FragmentController,從字面意思上看,是Fragment的一個控制器
java
final FragmentController mFragments = FragmentController.createController(new HostCallbacks());
當Activity執行onCreate方法的時候,最終是調用FragmentManager的dispatchCreate方法
java
public void dispatchStart() {
mHost.mFragmentManager.dispatchStart();
}
java
void dispatchCreate() {
mStateSaved = false;
mStopped = false;
mNonConfig.setIsStateSaved(false);
// 核心代碼 - 1
dispatchStateChange(Fragment.CREATED);
}
核心代碼 - 1
我們看下Fragment的生命週期是如何發生變化的,首先在dispatchStateChange方法中,會傳入一個int值,
java
private void dispatchStateChange(int nextState) {
try {
mExecutingActions = true;
mFragmentStore.dispatchStateChange(nextState);
moveToState(nextState, false);
if (USE_STATE_MANAGER) {
Set<SpecialEffectsController> controllers = collectAllSpecialEffectsController();
for (SpecialEffectsController controller : controllers) {
controller.forceCompleteAllOperations();
}
}
} finally {
mExecutingActions = false;
}
execPendingActions(true);
}
這個值從INITIALIZING -> RESUMED是升序排序,這裏我們可能會有疑問,Fragment的onPause、onStop、onDestory去哪了,為啥只到了RESUMED。
java
static final int INITIALIZING = -1; // Not yet attached.
static final int ATTACHED = 0; // Attached to the host.
static final int CREATED = 1; // Created.
static final int VIEW_CREATED = 2; // View Created.
static final int AWAITING_EXIT_EFFECTS = 3; // Downward state, awaiting exit effects
static final int ACTIVITY_CREATED = 4; // Fully created, not started.
static final int STARTED = 5; // Created and started, not resumed.
static final int AWAITING_ENTER_EFFECTS = 6; // Upward state, awaiting enter effects
static final int RESUMED = 7; // Created started and resumed.
彆着急,我們往下看moveToState方法。
```java
void moveToState(int newState, boolean always) {
if (mHost == null && newState != Fragment.INITIALIZING) {
throw new IllegalStateException("No activity");
}
if (!always && newState == mCurState) {
return;
}
mCurState = newState;
if (USE_STATE_MANAGER) {
mFragmentStore.moveToExpectedState();
} else {
// Must add them in the proper order. mActive fragments may be out of order
for (Fragment f : mFragmentStore.getFragments()) {
moveFragmentToExpectedState(f);
}
// Now iterate through all active fragments. These will include those that are removed
// and detached.
for (FragmentStateManager fragmentStateManager :
mFragmentStore.getActiveFragmentStateManagers()) {
Fragment f = fragmentStateManager.getFragment();
if (!f.mIsNewlyAdded) {
moveFragmentToExpectedState(f);
}
boolean beingRemoved = f.mRemoving && !f.isInBackStack();
if (beingRemoved) {
mFragmentStore.makeInactive(fragmentStateManager);
}
}
}
startPendingDeferredFragments();
if (mNeedMenuInvalidate && mHost != null && mCurState == Fragment.RESUMED) {
mHost.onSupportInvalidateOptionsMenu();
mNeedMenuInvalidate = false;
}
}
其中,核心方法為moveFragmentToExpectedState,傳入的參數為存儲的Fragment實例,最終生命週期的同步,是在moveToState方法中,此時兩個參數:一個是Fragment實例,另一個是即將更新的Fragment的生命週期狀態。
java
void moveToState(@NonNull Fragment f, int newState) {
FragmentStateManager fragmentStateManager = mFragmentStore.getFragmentStateManager(f.mWho);
//......
if (f.mFromLayout && f.mInLayout && f.mState == Fragment.VIEW_CREATED) {
newState = Math.max(newState, Fragment.VIEW_CREATED);
}
newState = Math.min(newState, fragmentStateManager.computeExpectedState());
if (f.mState <= newState) {
// If we are moving to the same state, we do not need to give up on the animation.
if (f.mState < newState && !mExitAnimationCancellationSignals.isEmpty()) {
// The fragment is currently being animated... but! Now we
// want to move our state back up. Give up on waiting for the
// animation and proceed from where we are.
cancelExitAnimation(f);
}
switch (f.mState) {
case Fragment.INITIALIZING:
if (newState > Fragment.INITIALIZING) {
fragmentStateManager.attach();
}
// fall through
case Fragment.ATTACHED:
if (newState > Fragment.ATTACHED) {
fragmentStateManager.create();
}
// fall through
case Fragment.CREATED:
// We want to unconditionally run this anytime we do a moveToState that
// moves the Fragment above INITIALIZING, including cases such as when
// we move from CREATED => CREATED as part of the case fall through above.
if (newState > Fragment.INITIALIZING) {
fragmentStateManager.ensureInflatedView();
}
if (newState > Fragment.CREATED) {
fragmentStateManager.createView();
}
// fall through
case Fragment.VIEW_CREATED:
if (newState > Fragment.VIEW_CREATED) {
fragmentStateManager.activityCreated();
}
// fall through
case Fragment.ACTIVITY_CREATED:
if (newState > Fragment.ACTIVITY_CREATED) {
fragmentStateManager.start();
}
// fall through
case Fragment.STARTED:
if (newState > Fragment.STARTED) {
fragmentStateManager.resume();
}
}
} else if (f.mState > newState) {
switch (f.mState) {
case Fragment.RESUMED:
if (newState < Fragment.RESUMED) {
fragmentStateManager.pause();
}
// fall through
case Fragment.STARTED:
if (newState < Fragment.STARTED) {
fragmentStateManager.stop();
}
// fall through
case Fragment.ACTIVITY_CREATED:
if (newState < Fragment.ACTIVITY_CREATED) {
if (isLoggingEnabled(Log.DEBUG)) {
Log.d(TAG, "movefrom ACTIVITY_CREATED: " + f);
}
if (f.mView != null) {
// Need to save the current view state if not
// done already.
if (mHost.onShouldSaveFragmentState(f) && f.mSavedViewState == null) {
fragmentStateManager.saveViewState();
}
}
}
// fall through
case Fragment.VIEW_CREATED:
if (newState < Fragment.VIEW_CREATED) {
FragmentAnim.AnimationOrAnimator anim = null;
if (f.mView != null && f.mContainer != null) {
// Stop any current animations:
f.mContainer.endViewTransition(f.mView);
f.mView.clearAnimation();
// If parent is being removed, no need to handle child animations.
if (!f.isRemovingParent()) {
if (mCurState > Fragment.INITIALIZING && !mDestroyed
&& f.mView.getVisibility() == View.VISIBLE
&& f.mPostponedAlpha >= 0) {
anim = FragmentAnim.loadAnimation(mHost.getContext(),
f, false, f.getPopDirection());
}
f.mPostponedAlpha = 0;
// Robolectric tests do not post the animation like a real device
// so we should keep up with the container and view in case the
// fragment view is destroyed before we can remove it.
ViewGroup container = f.mContainer;
View view = f.mView;
if (anim != null) {
FragmentAnim.animateRemoveFragment(f, anim,
mFragmentTransitionCallback);
}
container.removeView(view);
if (FragmentManager.isLoggingEnabled(Log.VERBOSE)) {
Log.v(FragmentManager.TAG, "Removing view " + view + " for "
+ "fragment " + f + " from container " + container);
}
// If the local container is different from the fragment
// container, that means onAnimationEnd was called, onDestroyView
// was dispatched and the fragment was already moved to state, so
// we should early return here instead of attempting to move to
// state again.
if (container != f.mContainer) {
return;
}
}
}
// If a fragment has an exit animation (or transition), do not destroy
// its view immediately and set the state after animating
if (mExitAnimationCancellationSignals.get(f) == null) {
fragmentStateManager.destroyFragmentView();
}
}
// fall through
case Fragment.CREATED:
if (newState < Fragment.CREATED) {
if (mExitAnimationCancellationSignals.get(f) != null) {
// We are waiting for the fragment's view to finish animating away.
newState = Fragment.CREATED;
} else {
fragmentStateManager.destroy();
}
}
// fall through
case Fragment.ATTACHED:
if (newState < Fragment.ATTACHED) {
fragmentStateManager.detach();
}
}
}
if (f.mState != newState) {
if (isLoggingEnabled(Log.DEBUG)) {
Log.d(TAG, "moveToState: Fragment state for " + f + " not updated inline; "
+ "expected state " + newState + " found " + f.mState);
}
f.mState = newState;
}
} ``` 其實這個方法看着長,但是很簡單,就是將newState與當前Fragment的狀態做一次比較,如果傳入的狀態(newState)比當前要大,例如:
```java f.mState:CREATED -> 1 newState:VIEW_CREATED -> 2
fragmentStateManager.createView(); ``` 此時就會調用fragmentStateManager的createView方法,最終會調用Fragment的onCreateView方法,進行View的創建。
反之,如果傳入的狀態(newState)比當前要小,例如:
```java f.mState:RESUMED -> 7 newState:STARTED -> 5
fragmentStateManager.pause(); ``` 此時Fragment就進入了onPuse的狀態,所以Google工程師在Androidx之後,將狀態就限制到RESUMED,然後通過同步比較狀態的這種方式,進行生命週期狀態的回調。
如果看過LifeCycle的源碼,對於生命週期狀態的同步應該也會比較瞭解,感興趣的夥伴可以看下這篇文章: Android進階寶典 -- Jetpack篇(最新LiveData LifeCycle源碼分析)
所以Activity是通過什麼手段去影響Fragment生命週期的呢?就是通過FragmentController調用dispatchCreate、dispatchResume......,其實內部是通過FragmentManager來管理,通過生命週期同步的方式來主動調用Fragment的生命週期方法。
1.2 Fragment的事務管理
如果人為管理Fragment,一般都是通過Transaction進行事務管理,
```kotlin //事務管理 val beginTransaction = supportFragmentManager.beginTransaction() beginTransaction.add(R.id.fl_fg,Fragment01()) beginTransaction.replace(R.id.fl_fg,Fragment01()) beginTransaction.hide(Fragment01()) beginTransaction.show(Fragment01())
beginTransaction.commit() ```
大概分為4種操作:add、replace、hide、show;其中在使用的時候,一般是add、replace是一掛,hide和show是一掛,具體的差別我們稍後再説,我們先看下Transaction是何許人也。
java
@NonNull
public FragmentTransaction beginTransaction() {
return new BackStackRecord(this);
}
在調用beginTransaction方法的時候,其實是創建了一個BackStackRecord實例,從字面意思上看是回退棧記錄類,用來記錄每個Fragment的回退棧的。
那麼在調用add、replace、hide、show的時候,其實就是調用BackStackRecord的方法,我們看下這幾個方法的實現。
java
@NonNull
public FragmentTransaction add(@IdRes int containerViewId, @NonNull Fragment fragment) {
doAddOp(containerViewId, fragment, null, OP_ADD);
return this;
}
在調用add的時候,內部調用了doAddOp方法。
```java
void doAddOp(int containerViewId, Fragment fragment, @Nullable String tag, int opcmd) {
final Class<?> fragmentClass = fragment.getClass();
final int modifiers = fragmentClass.getModifiers();
if (fragmentClass.isAnonymousClass() || !Modifier.isPublic(modifiers)
|| (fragmentClass.isMemberClass() && !Modifier.isStatic(modifiers))) {
throw new IllegalStateException("Fragment " + fragmentClass.getCanonicalName()
+ " must be a public static class to be properly recreated from"
+ " instance state.");
}
if (tag != null) {
if (fragment.mTag != null && !tag.equals(fragment.mTag)) {
throw new IllegalStateException("Can't change tag of fragment "
+ fragment + ": was " + fragment.mTag
+ " now " + tag);
}
fragment.mTag = tag;
}
if (containerViewId != 0) {
if (containerViewId == View.NO_ID) {
throw new IllegalArgumentException("Can't add fragment "
+ fragment + " with tag " + tag + " to container view with no id");
}
if (fragment.mFragmentId != 0 && fragment.mFragmentId != containerViewId) {
throw new IllegalStateException("Can't change container ID of fragment "
+ fragment + ": was " + fragment.mFragmentId
+ " now " + containerViewId);
}
fragment.mContainerId = fragment.mFragmentId = containerViewId;
}
addOp(new Op(opcmd, fragment));
} ``` doAddOp方法前面是做了一些判斷,有幾個參數我要説一下:
(1)tag:這個參數可以在我們調用add的時候自定義傳入,如果我們想要獲取add加入的這個Fragment,可以通過findFragmentByTag方法來獲取;
(2)containerViewId:這個是裝載Fragment的容器,一般需要我們自行設置一個FrameLayout,取FrameLayout的id。
最後調用addOp方法,創建一個Op對象,其中Op對象中有兩個參數比較重要:opcmd代表要執行的操作,例如OP_ADD(add操作)、fragment代表創建的Fragment的實例。
java
void addOp(Op op) {
mOps.add(op);
op.mEnterAnim = mEnterAnim;
op.mExitAnim = mExitAnim;
op.mPopEnterAnim = mPopEnterAnim;
op.mPopExitAnim = mPopExitAnim;
}
創建完成之後,存放在mOps數組中。
java
@NonNull
public FragmentTransaction replace(@IdRes int containerViewId, @NonNull Fragment fragment,
@Nullable String tag) {
if (containerViewId == 0) {
throw new IllegalArgumentException("Must use non-zero containerViewId");
}
doAddOp(containerViewId, fragment, tag, OP_REPLACE);
return this;
}
```java
@NonNull
public FragmentTransaction hide(@NonNull Fragment fragment) {
addOp(new Op(OP_HIDE, fragment));
return this;
}
java
@NonNull
public FragmentTransaction show(@NonNull Fragment fragment) {
addOp(new Op(OP_SHOW, fragment));
return this;
} ```
除此之外,我們看下replace、hide、show的邏輯,其實都是創建一個Op對象,然後存放在mOps數組中,當所有的事務準備好之後,最終需要調用commit來執行。
kotlin
beginTransaction.commit()
beginTransaction.commitAllowingStateLoss()
beginTransaction.commitNow()
beginTransaction.commitNowAllowingStateLoss()
commit執行有以上四種方式,這4種方式有什麼區別呢?我們從源碼角度來看一下。
commit和commitAllowingStateLoss的區別
java
@Override
public int commit() {
return commitInternal(false);
}
我們看到,在commit方法執行的時候,其實是調用了commitInternal方法,傳入了一個false參數,代表是否允許狀態丟失。
java
int commitInternal(boolean allowStateLoss) {
if (mCommitted) throw new IllegalStateException("commit already called");
if (FragmentManager.isLoggingEnabled(Log.VERBOSE)) {
Log.v(TAG, "Commit: " + this);
LogWriter logw = new LogWriter(TAG);
PrintWriter pw = new PrintWriter(logw);
dump(" ", pw);
pw.close();
}
mCommitted = true;
if (mAddToBackStack) {
mIndex = mManager.allocBackStackIndex();
} else {
mIndex = -1;
}
mManager.enqueueAction(this, allowStateLoss);
return mIndex;
}
其實看到這裏,我們能夠猜到commitAllowingStateLoss方法調用的時候,commitInternal方法傳入的一定是true,允許狀態丟失。
java
@Override
public int commitAllowingStateLoss() {
return commitInternal(true);
}
在commitInternal方法中,調用了enqueueAction方法,將此次事務處理加入隊列中。
java
void enqueueAction(@NonNull OpGenerator action, boolean allowStateLoss) {
if (!allowStateLoss) {
if (mHost == null) {
if (mDestroyed) {
throw new IllegalStateException("FragmentManager has been destroyed");
} else {
throw new IllegalStateException("FragmentManager has not been attached to a "
+ "host.");
}
}
checkStateLoss();
}
synchronized (mPendingActions) {
if (mHost == null) {
if (allowStateLoss) {
// This FragmentManager isn't attached, so drop the entire transaction.
return;
}
throw new IllegalStateException("Activity has been destroyed");
}
mPendingActions.add(action);
// 核心代碼 - 2
scheduleCommit();
}
}
在一開始就判斷allowStateLoss是否為false,如果為false,也就是通過commit方式提交,那麼會進入代碼塊,調用checkStateLoss方法。
java
private void checkStateLoss() {
if (isStateSaved()) {
throw new IllegalStateException(
"Can not perform this action after onSaveInstanceState");
}
}
java
public boolean isStateSaved() {
// See saveAllState() for the explanation of this. We do this for
// all platform versions, to keep our behavior more consistent between
// them.
return mStateSaved || mStopped;
}
在這個方法中,會判斷當前Fragment的狀態,有兩個值mStateSaved 或者 mStopped有一個為true,那麼就會拋異常。
我説一個場景:當用户退出後台的瞬間,調用commit事務提交,此時mStopped = true,應用就會崩潰。其實這種場景還是比較常見的,在開發中可能很少碰到,但是如果上線後從bugly中可能會看到這種崩潰,但是用户其實是無感知的,所以這種情況下建議使用commitAllowingStateLoss。
所以當Activity狀態發生變化的時候,例如退出後台、屏幕旋轉等,使用commitAllowingStateLoss不會拋異常。
commitNow和commitNowAllowingStateLoss的區別
這兩種提交方式,我們使用的好像比較少,我們看下他倆和前面的有啥區別。
java
@Override
public void commitNow() {
disallowAddToBackStack();
mManager.execSingleAction(this, false);
}
java
@Override
public void commitNowAllowingStateLoss() {
disallowAddToBackStack();
mManager.execSingleAction(this, true);
}
首先從源碼中我們看到,這種提交方式是不允許將Fragment加入到回退棧的,在這個方法中,會將mAllowAddToBackStack設置為false。
java
@NonNull
public FragmentTransaction disallowAddToBackStack() {
if (mAddToBackStack) {
throw new IllegalStateException(
"This transaction is already being added to the back stack");
}
mAllowAddToBackStack = false;
return this;
}
那麼這個時候,如果調用addToBackStack方法,因為mAllowAddToBackStack = false,此時就直接拋出異常。
java
@NonNull
public FragmentTransaction addToBackStack(@Nullable String name) {
if (!mAllowAddToBackStack) {
throw new IllegalStateException(
"This FragmentTransaction is not allowed to be added to the back stack.");
}
mAddToBackStack = true;
mName = name;
return this;
}
而且調用commitNow方法的時候,如果當前Fragment已經被加入到回退棧了,也會拋出異常。
核心代碼 - 2
這是一個區別,接下來我們關注一下commit提交和commitNow提交的另一個區別。如果通過commit提交,那麼最終調用這個方法scheduleCommit,我們看到是通過Handler來發送一個消息來異步執行事務的提交;
java
void scheduleCommit() {
synchronized (mPendingActions) {
boolean postponeReady =
mPostponedTransactions != null && !mPostponedTransactions.isEmpty();
boolean pendingReady = mPendingActions.size() == 1;
if (postponeReady || pendingReady) {
mHost.getHandler().removeCallbacks(mExecCommit);
mHost.getHandler().post(mExecCommit);
updateOnBackPressedCallbackEnabled();
}
}
}
那麼commitNow在執行事務提交的時候,我們看下execSingleAction方法,發現是同步完成的,所以兩者的另一個區別就是執行事務時,commit是異步操作,而commitNow是同步的。
```java
void execSingleAction(@NonNull OpGenerator action, boolean allowStateLoss) {
if (allowStateLoss && (mHost == null || mDestroyed)) {
// This FragmentManager isn't attached, so drop the entire transaction.
return;
}
ensureExecReady(allowStateLoss);
if (action.generateOps(mTmpRecords, mTmpIsPop)) {
mExecutingActions = true;
try {
removeRedundantOperationsAndExecute(mTmpRecords, mTmpIsPop);
} finally {
cleanupExec();
}
}
updateOnBackPressedCallbackEnabled();
doPendingDeferredStart();
mFragmentStore.burpActive();
} ```
所以這個會解決什麼問題呢?熟悉的Handler的夥伴們應該知道,所有Handler發送的消息都會存在MessageQueue中,Looper通過loop方法從MessageQueue中取出事件並執行,所以當我們通過commit去提交添加一個Fragment的時候,如果還沒有執行到這個事件,就通過findFragmentByTag or findFragmentById去查找這個Fragment就會找不到,有沒有夥伴們碰到過這個問題?
所以如果我們業務場景中必須要保證要拿到這個Fragment,那麼建議使用commitNow這個提交方式,但是需要注意回退棧的問題,我們可以通過反射的方式,將mAllowAddToBackStack設置為true,避免拋出異常。但是這種方式也需要根據場景酌情使用,因為頻繁地使用commitNow可能會導致卡頓。
1.3 Fragment狀態保存
當我們的應用發生異常,或者Activity的狀態發生變化時,我們想保存Fragment的狀態,以便後續的展示,那麼我們先看下 Activity # onSaveInstanceState方法是怎麼實現的。 ```java protected void onSaveInstanceState(@NonNull Bundle outState) { outState.putBundle(WINDOW_HIERARCHY_TAG, mWindow.saveHierarchyState());
outState.putInt(LAST_AUTOFILL_ID, mLastAutofillId);
// 1
Parcelable p = mFragments.saveAllState();
if (p != null) {
outState.putParcelable(FRAGMENTS_TAG, p);
}
if (mAutoFillResetNeeded) {
outState.putBoolean(AUTOFILL_RESET_NEEDED, true);
getAutofillManager().onSaveInstanceState(outState);
}
dispatchActivitySaveInstanceState(outState);
} ```
首先,我們看調用了mFragments的saveAllState方法,mFragments還是我們之前看到的FragmentController,調用了還是FragmentManager的saveAllState方法。 ```java Parcelable saveAllState() { // Make sure all pending operations have now been executed to get // our state update-to-date. forcePostponedTransactions(); endAnimatingAwayFragments(); execPendingActions(true);
mStateSaved = true;
mNonConfig.setIsStateSaved(true);
// First collect all active fragments.
ArrayList<FragmentState> active = mFragmentStore.saveActiveFragments();
if (active.isEmpty()) {
if (isLoggingEnabled(Log.VERBOSE)) Log.v(TAG, "saveAllState: no fragments!");
return null;
}
// Build list of currently added fragments.
ArrayList<String> added = mFragmentStore.saveAddedFragments();
// Now save back stack.
BackStackState[] backStack = null;
if (mBackStack != null) {
int size = mBackStack.size();
if (size > 0) {
backStack = new BackStackState[size];
for (int i = 0; i < size; i++) {
backStack[i] = new BackStackState(mBackStack.get(i));
if (isLoggingEnabled(Log.VERBOSE)) {
Log.v(TAG, "saveAllState: adding back stack #" + i
+ ": " + mBackStack.get(i));
}
}
}
}
FragmentManagerState fms = new FragmentManagerState();
fms.mActive = active;
fms.mAdded = added;
fms.mBackStack = backStack;
fms.mBackStackIndex = mBackStackIndex.get();
if (mPrimaryNav != null) {
fms.mPrimaryNavActiveWho = mPrimaryNav.mWho;
}
fms.mResultKeys.addAll(mResults.keySet());
fms.mResults.addAll(mResults.values());
fms.mLaunchedFragments = new ArrayList<>(mLaunchedFragments);
return fms;
} ``` 首先拿到當前頁面展示的Fragment,並將其封裝為FragmentState,返回的是一個列表;然後拿到通過事務添加進來的全部Fragment的UUID集合,最終創建一個FragmentManagerState類,然後將全部的Fragment的狀態存儲到FragmentManagerState中,最終返回的序列化數據就是FragmentManagerState。
那麼恢復數據,其實就是一個反序列化的過程,通過拿到FragmentManagerState數據之後,恢復所有Fragment在銷燬之前的狀態。
這裏需要注意一點,當系統恢復Fragment的時候,是採用反射的方式進行Fragment的創建,此時是通過newInstance()的方式完成的,所以Fragment一定要有一個空參構造方法,否則直接拋異常。
1.4 Fragment回退棧管理
如果閲讀過Navigation源碼,我們會發現,當執行commit之前,都會將Fragment加入回退棧,那麼將Fragment添加到回退棧和不添加到回退棧,有什麼區別呢?
我們看下面這個場景,當創建Fragment01之後,點擊按鈕跳轉到Fragment02,此時我們看當Fragment02展示之後,Fragment01直接走了銷燬的流程,而且已經調用了onDestroy方法。
java
2023-02-11 18:35:56.070 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onAttach
2023-02-11 18:35:56.071 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onCreate
2023-02-11 18:35:56.072 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onCreateView
2023-02-11 18:35:56.085 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onViewCreated
2023-02-11 18:35:56.095 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onResume
2023-02-11 18:36:45.065 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onPause
2023-02-11 18:36:45.068 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onStop
2023-02-11 18:36:45.072 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onAttach
2023-02-11 18:36:45.075 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onCreate
2023-02-11 18:36:45.079 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onCreateView
2023-02-11 18:36:45.118 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onViewCreated
2023-02-11 18:36:45.138 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onDestroyView
2023-02-11 18:36:45.162 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onDestroy
2023-02-11 18:36:45.165 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onResume
當我們將Fragment01加入到回退棧之後,我們發現,Fragment01好像並沒有調用onDestory方法,僅僅是將View銷燬了
java
2023-02-11 18:41:05.538 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onAttach
2023-02-11 18:41:05.540 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onCreate
2023-02-11 18:41:05.542 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onCreateView
2023-02-11 18:41:05.560 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onViewCreated
2023-02-11 18:41:05.576 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onResume
2023-02-11 18:41:09.784 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onPause
2023-02-11 18:41:09.787 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onStop
2023-02-11 18:41:09.788 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onAttach
2023-02-11 18:41:09.790 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onCreate
2023-02-11 18:41:09.796 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onCreateView
2023-02-11 18:41:09.811 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onViewCreated
2023-02-11 18:41:09.819 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onDestroyView
2023-02-11 18:41:09.837 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onResume
那麼此時,我們點擊返回按鈕,這個時候我們發現Fragment01生命週期是從頭重新執行了嗎?並沒有,而是直接從onCreateView開始,沒有執行onCreate。
```java 2023-02-11 19:04:42.886 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onAttach 2023-02-11 19:04:42.887 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreate 2023-02-11 19:04:42.888 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreateView 2023-02-11 19:04:42.897 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onViewCreated 2023-02-11 19:04:42.908 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onResume 2023-02-11 19:04:45.572 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onPause 2023-02-11 19:04:45.572 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onStop 2023-02-11 19:04:45.573 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onAttach 2023-02-11 19:04:45.574 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onCreate 2023-02-11 19:04:45.574 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onCreateView 2023-02-11 19:04:45.582 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onViewCreated 2023-02-11 19:04:45.585 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onDestroyView 2023-02-11 19:04:45.588 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onResume 2023-02-11 19:04:46.874 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onPause 2023-02-11 19:04:46.875 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onStop 2023-02-11 19:04:46.875 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreateView 2023-02-11 19:04:46.881 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onViewCreated 2023-02-11 19:04:46.883 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onDestroyView 2023-02-11 19:04:46.884 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onDestroy 2023-02-11 19:04:46.885 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onResume
```
所以加入回退棧的作用,我給夥伴們總結一下:
(1)通過replace的方式執行頁面之間的切換,加入回退棧能夠避免數據丟失(onDestory時ViewModel數據會被清除),防止頁面被直接銷燬;
(2)加入回退棧更符合用户行為邏輯,從哪個頁面來返回就返回哪個頁面,而且不會重複調用onCreate方法,因此可以放網絡請求的邏輯,避免多次接口請求。
我們這裏帶一下Navigation的回退棧管理 ```kotlin private fun navigate( entry: NavBackStackEntry, navOptions: NavOptions?, navigatorExtras: Navigator.Extras? ) { val initialNavigation = state.backStack.value.isEmpty() val restoreState = ( navOptions != null && !initialNavigation && navOptions.shouldRestoreState() && savedIds.remove(entry.id) ) if (restoreState) { // Restore back stack does all the work to restore the entry fragmentManager.restoreBackStack(entry.id) state.push(entry) return } val ft = createFragmentTransaction(entry, navOptions)
if (!initialNavigation) {
ft.addToBackStack(entry.id)
}
if (navigatorExtras is Extras) {
for ((key, value) in navigatorExtras.sharedElements) {
ft.addSharedElement(key, value)
}
}
ft.commit()
// The commit succeeded, update our view of the world
state.push(entry)
} ``` 這裏有個變量需要注意一下:initialNavigation,它是一個boolean類型,判斷當前回退棧是否為空,如果是第一次使用,那麼就為空,此時不會給當前頁面添加回退棧。這裏其實很好了解,如果把起點加入回退棧,那麼在返回的時候,起點其實已經沒有上級頁面了,就不知道要往哪跳,所以系統會生成一個空白頁面,這裏大家可以使用一下。
當然有些問題還是避免不了,因為如果加入回退棧,那麼Fragment的onCreateView可能會被多次執行,會導致頁面的狀態發生變化,無法保留上次頁面跳轉時狀態,頁面會被刷新,因此可以考慮使用hide show的方式來進行頁面狀態管理。
2 Fragment常見問題解決
這個模塊我主要介紹一下我們在日常開發中經常會遇到的問題
2.1 Can not perform this action after onSaveInstanceState
在調用commit方法的時候,因為allowStateloss為false,所以需要檢查狀態。
java
private void checkStateLoss() {
if (isStateSaved()) {
throw new IllegalStateException(
"Can not perform this action after onSaveInstanceState");
}
}
java
public boolean isStateSaved() {
// See saveAllState() for the explanation of this. We do this for
// all platform versions, to keep our behavior more consistent between
// them.
return mStateSaved || mStopped;
}
如果在當前頁面發起網絡請求,等到請求結果之前可能會有耗時,然後此時跳轉到了下一個頁面,我們知道這個頁面的生命週期會走到onDestoryView,此時會觸發onSaveInstance方法,mStateSaved會設置為true,那麼此時如果在拿到結果之後又進行了一次commit,就直接回拋出異常。
所以對於commit提交來説,不建議在子線程中進行;如果確實需要這種操作,那麼就建議使用commitAllowingStateLoss。
可能很多夥伴也會好奇,在實際開發中這種問題很難碰到,一翻bugly就會看到好多線上用户報這個問題。這個就是用户場景我們無法cover全覆蓋,用户可能用2G、3G網絡就會出現網絡加載緩慢的問題。
2.2 Fragment的重疊問題
這種問題其實如果瞭解系統的恢復機制,應該還是很好避免。為什麼會出現Fragment重疊的問題呢?首先我們做的時候是在Activity # onCreate方法中進行add操作。 ```kotlin override fun onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_my_fragment_actvity) fl_fg = findViewById(R.id.fl_fg) btn_jump = findViewById(R.id.btn_jump)
btn_jump.setOnClickListener {
val transient = supportFragmentManager.beginTransaction()
transient.replace(R.id.fl_fg,Fragment02())
transient.addToBackStack(null)
transient.commit()
}
//事務管理
val beginTransaction = supportFragmentManager.beginTransaction()
beginTransaction.add(R.id.fl_fg, Fragment01())
beginTransaction.addToBackStack("Fragment01")
beginTransaction.commit()
} ``` 如果此時屏幕進行旋轉,前提是在沒有任何配置的情況下,Activity會被銷燬重建,此時按照我們在1.3小節中對於Fragment狀態保存的瞭解,此時會將Fragment的狀態保存為FragmentManagerState並將其序列化,在Activity重建之後,onCreate中會獲取FragmentManagerState並重建Fragment,此時其實系統已經幫我們重建了Fragment,但是我們在onCreate中再次進行了add操作,此時就會造成Fragment疊加。
其實我們瞭解這個機制之後就很好解決了,首先第一種方案:在onSaveInstanceState方法中,不去保存Fragment的狀態,但是這種方案可能會有風險,因為一刀切可能會影響其他的功能。
另一種就是調用add的時機,當savedInstanceState為空的時候,一般就是首次進來的時候,這個時候就可以執行add;但是如果是重建狀態下,savedInstanceState不為空,就不需要自行add,使用系統幫我們恢復的那一份就行。 ```kotlin if (savedInstanceState == null) { //事務管理 val beginTransaction = supportFragmentManager.beginTransaction() beginTransaction.add(R.id.fl_fg, Fragment01()) beginTransaction.addToBackStack("Fragment01")
beginTransaction.commit()
} ```
除此之外,之前在使用Navigation的時候,因為官方的那種方式是採用replace的方式會導致View的狀態丟失,因此自定義了一個FragmentNavigator,但是落實到項目中的時候,發現一個重疊的問題。 Android進階寶典 -- JetPack Navigation的高級用法(解決路由跳轉新建Fragment頁面問題)
```kotlin val ft = fragmentManager.beginTransaction() val currentFragment = fragmentManager.primaryNavigationFragment KLog.d(TAG,"currentFragment $currentFragment") //將當前Fragment隱藏 if (currentFragment != null) { ft.hide(currentFragment) } //獲取目的地Fragment val destinationId = destination.id.toString() var nextFragment = fragmentManager.findFragmentByTag(destinationId)
if (nextFragment != null) { ft.show(nextFragment) } else { //説明當前Fragment沒有被創建過 nextFragment = fragmentManager.fragmentFactory.instantiate(context.classLoader, className) nextFragment.arguments = args ft.add(containerId, nextFragment, destinationId) } ``` 因為官方提交事務都是commit,所以自定義Navigator的時候,事務提交也是採用的commit;所以從1.2小節中我們對於commit的原理的認知,這是一個異步的過程,看下圖:
首先Fragment1為起點,在加載路由表的時候,先將Fragment add到NavHostFragment中;因為commit是一個異步的過程可能有延遲,此時調用navigate從Fragment1跳轉到Fragment2,按照上面代碼中的邏輯,首先會調用primaryNavigationFragment獲取當前頁面實例(Fragment1),此時因為commit延遲導致沒有獲取到,此時currentFragment = null,隱藏失敗!
那麼當加載完成Fragment2的時候,Fragment1也加載完成,此時兩個頁面就發生了重疊;所以這種情況下,就需要考慮使用commitNow做同步處理,但是需要注意使用commitNow就不允許加入回退棧,這裏還需要考慮使用反射將標誌位取反。
目前我在業務場景中做的處理是在Fragment1調用onAttach的時候,此時Fragment已經創建,然後調用navigate進行跳轉。
當然還有一種Fragment重疊的問題,就是多次調用add往同一個containerId中添加,此時Fragment就會全部重疊到一起,但是這種情況下,不會影響任意一個Fragment的生命週期,即便是下面的Fragment已經不可見了;而replace則是會將當前容器中Fragment銷燬,然後再添加新的Fragment,這就是add和replace的區別。
這一篇文章原理性的東西比較多,但是使用上很少介紹,相信大部分的夥伴們應該都瞭解使用方式,但是在使用的時候可能都會遇到一些問題,如果熟悉了其中的原理,定位問題也會比較迅速,而且在使用api的時候也會更加謹慎。