Android进阶宝典 -- 从源码角度全面分析Frgament原理
在Android中,真正作为承载页面级别的组件就两个:Activity和Fragment。说起Activity,我想伙伴们都非常熟悉,如果想新建一个页面,那么就创建一个Activity,这个是传统的开发思想。
伙伴们可以想一想,当一个项目成规模以后,Activity的量级达到了50+ or 100+,这个时候页面之间的跳转就需要路由来管理,如果想写startActivity写到吐,那么也没问题。那么有没有好的方式能够非常方便地管理页面,而且能够用最少量的Activity,建议伙伴们去了解下Navigation,其内部有一套Fragment的管理机制。
为啥要出这篇Fragment核心原理分析,就是因为在项目中使用Navigation的时候遇到了一些问题,但是伙伴们可能对于Fragment的原理不是那么了解,像生命周期、Fragment事务管理、回退栈等,那么在使用Navigation的时候,如果想要Hook Navigation源码,不知道如何处理Fragment之间的跳转逻辑,那么看了这篇文章,可能会有所帮助。
1 Fragment基础概念
1.1 Fragment的生命周期
首先我们先要知道,Fragment是不能像Activity那样独立存在,你可以认为它是一个View,它必须要依赖于Activity存在,而且是受Activity的生命周期影响,从而改变自身的生命周期,反之它没有影响Activity生命周期的能力。
那么我们从源码的角度看一下,Activity是如何影响Fragment的生命周期的,然后从实例出发验证一下与源码是否一致。那么我们从FragmentActivity的onCreate方法开始,当Activity调用onCreate方法的时候,就会回调这个方法。
```java @Override protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState);
mFragmentLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
mFragments.dispatchCreate();
} ```
首先我们看一下,mFragments是什么,它是一个FragmentController,从字面意思上看,是Fragment的一个控制器
java
final FragmentController mFragments = FragmentController.createController(new HostCallbacks());
当Activity执行onCreate方法的时候,最终是调用FragmentManager的dispatchCreate方法
java
public void dispatchStart() {
mHost.mFragmentManager.dispatchStart();
}
java
void dispatchCreate() {
mStateSaved = false;
mStopped = false;
mNonConfig.setIsStateSaved(false);
// 核心代码 - 1
dispatchStateChange(Fragment.CREATED);
}
核心代码 - 1
我们看下Fragment的生命周期是如何发生变化的,首先在dispatchStateChange方法中,会传入一个int值,
java
private void dispatchStateChange(int nextState) {
try {
mExecutingActions = true;
mFragmentStore.dispatchStateChange(nextState);
moveToState(nextState, false);
if (USE_STATE_MANAGER) {
Set<SpecialEffectsController> controllers = collectAllSpecialEffectsController();
for (SpecialEffectsController controller : controllers) {
controller.forceCompleteAllOperations();
}
}
} finally {
mExecutingActions = false;
}
execPendingActions(true);
}
这个值从INITIALIZING -> RESUMED是升序排序,这里我们可能会有疑问,Fragment的onPause、onStop、onDestory去哪了,为啥只到了RESUMED。
java
static final int INITIALIZING = -1; // Not yet attached.
static final int ATTACHED = 0; // Attached to the host.
static final int CREATED = 1; // Created.
static final int VIEW_CREATED = 2; // View Created.
static final int AWAITING_EXIT_EFFECTS = 3; // Downward state, awaiting exit effects
static final int ACTIVITY_CREATED = 4; // Fully created, not started.
static final int STARTED = 5; // Created and started, not resumed.
static final int AWAITING_ENTER_EFFECTS = 6; // Upward state, awaiting enter effects
static final int RESUMED = 7; // Created started and resumed.
别着急,我们往下看moveToState方法。
```java
void moveToState(int newState, boolean always) {
if (mHost == null && newState != Fragment.INITIALIZING) {
throw new IllegalStateException("No activity");
}
if (!always && newState == mCurState) {
return;
}
mCurState = newState;
if (USE_STATE_MANAGER) {
mFragmentStore.moveToExpectedState();
} else {
// Must add them in the proper order. mActive fragments may be out of order
for (Fragment f : mFragmentStore.getFragments()) {
moveFragmentToExpectedState(f);
}
// Now iterate through all active fragments. These will include those that are removed
// and detached.
for (FragmentStateManager fragmentStateManager :
mFragmentStore.getActiveFragmentStateManagers()) {
Fragment f = fragmentStateManager.getFragment();
if (!f.mIsNewlyAdded) {
moveFragmentToExpectedState(f);
}
boolean beingRemoved = f.mRemoving && !f.isInBackStack();
if (beingRemoved) {
mFragmentStore.makeInactive(fragmentStateManager);
}
}
}
startPendingDeferredFragments();
if (mNeedMenuInvalidate && mHost != null && mCurState == Fragment.RESUMED) {
mHost.onSupportInvalidateOptionsMenu();
mNeedMenuInvalidate = false;
}
}
其中,核心方法为moveFragmentToExpectedState,传入的参数为存储的Fragment实例,最终生命周期的同步,是在moveToState方法中,此时两个参数:一个是Fragment实例,另一个是即将更新的Fragment的生命周期状态。
java
void moveToState(@NonNull Fragment f, int newState) {
FragmentStateManager fragmentStateManager = mFragmentStore.getFragmentStateManager(f.mWho);
//......
if (f.mFromLayout && f.mInLayout && f.mState == Fragment.VIEW_CREATED) {
newState = Math.max(newState, Fragment.VIEW_CREATED);
}
newState = Math.min(newState, fragmentStateManager.computeExpectedState());
if (f.mState <= newState) {
// If we are moving to the same state, we do not need to give up on the animation.
if (f.mState < newState && !mExitAnimationCancellationSignals.isEmpty()) {
// The fragment is currently being animated... but! Now we
// want to move our state back up. Give up on waiting for the
// animation and proceed from where we are.
cancelExitAnimation(f);
}
switch (f.mState) {
case Fragment.INITIALIZING:
if (newState > Fragment.INITIALIZING) {
fragmentStateManager.attach();
}
// fall through
case Fragment.ATTACHED:
if (newState > Fragment.ATTACHED) {
fragmentStateManager.create();
}
// fall through
case Fragment.CREATED:
// We want to unconditionally run this anytime we do a moveToState that
// moves the Fragment above INITIALIZING, including cases such as when
// we move from CREATED => CREATED as part of the case fall through above.
if (newState > Fragment.INITIALIZING) {
fragmentStateManager.ensureInflatedView();
}
if (newState > Fragment.CREATED) {
fragmentStateManager.createView();
}
// fall through
case Fragment.VIEW_CREATED:
if (newState > Fragment.VIEW_CREATED) {
fragmentStateManager.activityCreated();
}
// fall through
case Fragment.ACTIVITY_CREATED:
if (newState > Fragment.ACTIVITY_CREATED) {
fragmentStateManager.start();
}
// fall through
case Fragment.STARTED:
if (newState > Fragment.STARTED) {
fragmentStateManager.resume();
}
}
} else if (f.mState > newState) {
switch (f.mState) {
case Fragment.RESUMED:
if (newState < Fragment.RESUMED) {
fragmentStateManager.pause();
}
// fall through
case Fragment.STARTED:
if (newState < Fragment.STARTED) {
fragmentStateManager.stop();
}
// fall through
case Fragment.ACTIVITY_CREATED:
if (newState < Fragment.ACTIVITY_CREATED) {
if (isLoggingEnabled(Log.DEBUG)) {
Log.d(TAG, "movefrom ACTIVITY_CREATED: " + f);
}
if (f.mView != null) {
// Need to save the current view state if not
// done already.
if (mHost.onShouldSaveFragmentState(f) && f.mSavedViewState == null) {
fragmentStateManager.saveViewState();
}
}
}
// fall through
case Fragment.VIEW_CREATED:
if (newState < Fragment.VIEW_CREATED) {
FragmentAnim.AnimationOrAnimator anim = null;
if (f.mView != null && f.mContainer != null) {
// Stop any current animations:
f.mContainer.endViewTransition(f.mView);
f.mView.clearAnimation();
// If parent is being removed, no need to handle child animations.
if (!f.isRemovingParent()) {
if (mCurState > Fragment.INITIALIZING && !mDestroyed
&& f.mView.getVisibility() == View.VISIBLE
&& f.mPostponedAlpha >= 0) {
anim = FragmentAnim.loadAnimation(mHost.getContext(),
f, false, f.getPopDirection());
}
f.mPostponedAlpha = 0;
// Robolectric tests do not post the animation like a real device
// so we should keep up with the container and view in case the
// fragment view is destroyed before we can remove it.
ViewGroup container = f.mContainer;
View view = f.mView;
if (anim != null) {
FragmentAnim.animateRemoveFragment(f, anim,
mFragmentTransitionCallback);
}
container.removeView(view);
if (FragmentManager.isLoggingEnabled(Log.VERBOSE)) {
Log.v(FragmentManager.TAG, "Removing view " + view + " for "
+ "fragment " + f + " from container " + container);
}
// If the local container is different from the fragment
// container, that means onAnimationEnd was called, onDestroyView
// was dispatched and the fragment was already moved to state, so
// we should early return here instead of attempting to move to
// state again.
if (container != f.mContainer) {
return;
}
}
}
// If a fragment has an exit animation (or transition), do not destroy
// its view immediately and set the state after animating
if (mExitAnimationCancellationSignals.get(f) == null) {
fragmentStateManager.destroyFragmentView();
}
}
// fall through
case Fragment.CREATED:
if (newState < Fragment.CREATED) {
if (mExitAnimationCancellationSignals.get(f) != null) {
// We are waiting for the fragment's view to finish animating away.
newState = Fragment.CREATED;
} else {
fragmentStateManager.destroy();
}
}
// fall through
case Fragment.ATTACHED:
if (newState < Fragment.ATTACHED) {
fragmentStateManager.detach();
}
}
}
if (f.mState != newState) {
if (isLoggingEnabled(Log.DEBUG)) {
Log.d(TAG, "moveToState: Fragment state for " + f + " not updated inline; "
+ "expected state " + newState + " found " + f.mState);
}
f.mState = newState;
}
} ``` 其实这个方法看着长,但是很简单,就是将newState与当前Fragment的状态做一次比较,如果传入的状态(newState)比当前要大,例如:
```java f.mState:CREATED -> 1 newState:VIEW_CREATED -> 2
fragmentStateManager.createView(); ``` 此时就会调用fragmentStateManager的createView方法,最终会调用Fragment的onCreateView方法,进行View的创建。
反之,如果传入的状态(newState)比当前要小,例如:
```java f.mState:RESUMED -> 7 newState:STARTED -> 5
fragmentStateManager.pause(); ``` 此时Fragment就进入了onPuse的状态,所以Google工程师在Androidx之后,将状态就限制到RESUMED,然后通过同步比较状态的这种方式,进行生命周期状态的回调。
如果看过LifeCycle的源码,对于生命周期状态的同步应该也会比较了解,感兴趣的伙伴可以看下这篇文章: Android进阶宝典 -- Jetpack篇(最新LiveData LifeCycle源码分析)
所以Activity是通过什么手段去影响Fragment生命周期的呢?就是通过FragmentController调用dispatchCreate、dispatchResume......,其实内部是通过FragmentManager来管理,通过生命周期同步的方式来主动调用Fragment的生命周期方法。
1.2 Fragment的事务管理
如果人为管理Fragment,一般都是通过Transaction进行事务管理,
```kotlin //事务管理 val beginTransaction = supportFragmentManager.beginTransaction() beginTransaction.add(R.id.fl_fg,Fragment01()) beginTransaction.replace(R.id.fl_fg,Fragment01()) beginTransaction.hide(Fragment01()) beginTransaction.show(Fragment01())
beginTransaction.commit() ```
大概分为4种操作:add、replace、hide、show;其中在使用的时候,一般是add、replace是一挂,hide和show是一挂,具体的差别我们稍后再说,我们先看下Transaction是何许人也。
java
@NonNull
public FragmentTransaction beginTransaction() {
return new BackStackRecord(this);
}
在调用beginTransaction方法的时候,其实是创建了一个BackStackRecord实例,从字面意思上看是回退栈记录类,用来记录每个Fragment的回退栈的。
那么在调用add、replace、hide、show的时候,其实就是调用BackStackRecord的方法,我们看下这几个方法的实现。
java
@NonNull
public FragmentTransaction add(@IdRes int containerViewId, @NonNull Fragment fragment) {
doAddOp(containerViewId, fragment, null, OP_ADD);
return this;
}
在调用add的时候,内部调用了doAddOp方法。
```java
void doAddOp(int containerViewId, Fragment fragment, @Nullable String tag, int opcmd) {
final Class<?> fragmentClass = fragment.getClass();
final int modifiers = fragmentClass.getModifiers();
if (fragmentClass.isAnonymousClass() || !Modifier.isPublic(modifiers)
|| (fragmentClass.isMemberClass() && !Modifier.isStatic(modifiers))) {
throw new IllegalStateException("Fragment " + fragmentClass.getCanonicalName()
+ " must be a public static class to be properly recreated from"
+ " instance state.");
}
if (tag != null) {
if (fragment.mTag != null && !tag.equals(fragment.mTag)) {
throw new IllegalStateException("Can't change tag of fragment "
+ fragment + ": was " + fragment.mTag
+ " now " + tag);
}
fragment.mTag = tag;
}
if (containerViewId != 0) {
if (containerViewId == View.NO_ID) {
throw new IllegalArgumentException("Can't add fragment "
+ fragment + " with tag " + tag + " to container view with no id");
}
if (fragment.mFragmentId != 0 && fragment.mFragmentId != containerViewId) {
throw new IllegalStateException("Can't change container ID of fragment "
+ fragment + ": was " + fragment.mFragmentId
+ " now " + containerViewId);
}
fragment.mContainerId = fragment.mFragmentId = containerViewId;
}
addOp(new Op(opcmd, fragment));
} ``` doAddOp方法前面是做了一些判断,有几个参数我要说一下:
(1)tag:这个参数可以在我们调用add的时候自定义传入,如果我们想要获取add加入的这个Fragment,可以通过findFragmentByTag方法来获取;
(2)containerViewId:这个是装载Fragment的容器,一般需要我们自行设置一个FrameLayout,取FrameLayout的id。
最后调用addOp方法,创建一个Op对象,其中Op对象中有两个参数比较重要:opcmd代表要执行的操作,例如OP_ADD(add操作)、fragment代表创建的Fragment的实例。
java
void addOp(Op op) {
mOps.add(op);
op.mEnterAnim = mEnterAnim;
op.mExitAnim = mExitAnim;
op.mPopEnterAnim = mPopEnterAnim;
op.mPopExitAnim = mPopExitAnim;
}
创建完成之后,存放在mOps数组中。
java
@NonNull
public FragmentTransaction replace(@IdRes int containerViewId, @NonNull Fragment fragment,
@Nullable String tag) {
if (containerViewId == 0) {
throw new IllegalArgumentException("Must use non-zero containerViewId");
}
doAddOp(containerViewId, fragment, tag, OP_REPLACE);
return this;
}
```java
@NonNull
public FragmentTransaction hide(@NonNull Fragment fragment) {
addOp(new Op(OP_HIDE, fragment));
return this;
}
java
@NonNull
public FragmentTransaction show(@NonNull Fragment fragment) {
addOp(new Op(OP_SHOW, fragment));
return this;
} ```
除此之外,我们看下replace、hide、show的逻辑,其实都是创建一个Op对象,然后存放在mOps数组中,当所有的事务准备好之后,最终需要调用commit来执行。
kotlin
beginTransaction.commit()
beginTransaction.commitAllowingStateLoss()
beginTransaction.commitNow()
beginTransaction.commitNowAllowingStateLoss()
commit执行有以上四种方式,这4种方式有什么区别呢?我们从源码角度来看一下。
commit和commitAllowingStateLoss的区别
java
@Override
public int commit() {
return commitInternal(false);
}
我们看到,在commit方法执行的时候,其实是调用了commitInternal方法,传入了一个false参数,代表是否允许状态丢失。
java
int commitInternal(boolean allowStateLoss) {
if (mCommitted) throw new IllegalStateException("commit already called");
if (FragmentManager.isLoggingEnabled(Log.VERBOSE)) {
Log.v(TAG, "Commit: " + this);
LogWriter logw = new LogWriter(TAG);
PrintWriter pw = new PrintWriter(logw);
dump(" ", pw);
pw.close();
}
mCommitted = true;
if (mAddToBackStack) {
mIndex = mManager.allocBackStackIndex();
} else {
mIndex = -1;
}
mManager.enqueueAction(this, allowStateLoss);
return mIndex;
}
其实看到这里,我们能够猜到commitAllowingStateLoss方法调用的时候,commitInternal方法传入的一定是true,允许状态丢失。
java
@Override
public int commitAllowingStateLoss() {
return commitInternal(true);
}
在commitInternal方法中,调用了enqueueAction方法,将此次事务处理加入队列中。
java
void enqueueAction(@NonNull OpGenerator action, boolean allowStateLoss) {
if (!allowStateLoss) {
if (mHost == null) {
if (mDestroyed) {
throw new IllegalStateException("FragmentManager has been destroyed");
} else {
throw new IllegalStateException("FragmentManager has not been attached to a "
+ "host.");
}
}
checkStateLoss();
}
synchronized (mPendingActions) {
if (mHost == null) {
if (allowStateLoss) {
// This FragmentManager isn't attached, so drop the entire transaction.
return;
}
throw new IllegalStateException("Activity has been destroyed");
}
mPendingActions.add(action);
// 核心代码 - 2
scheduleCommit();
}
}
在一开始就判断allowStateLoss是否为false,如果为false,也就是通过commit方式提交,那么会进入代码块,调用checkStateLoss方法。
java
private void checkStateLoss() {
if (isStateSaved()) {
throw new IllegalStateException(
"Can not perform this action after onSaveInstanceState");
}
}
java
public boolean isStateSaved() {
// See saveAllState() for the explanation of this. We do this for
// all platform versions, to keep our behavior more consistent between
// them.
return mStateSaved || mStopped;
}
在这个方法中,会判断当前Fragment的状态,有两个值mStateSaved 或者 mStopped有一个为true,那么就会抛异常。
我说一个场景:当用户退出后台的瞬间,调用commit事务提交,此时mStopped = true,应用就会崩溃。其实这种场景还是比较常见的,在开发中可能很少碰到,但是如果上线后从bugly中可能会看到这种崩溃,但是用户其实是无感知的,所以这种情况下建议使用commitAllowingStateLoss。
所以当Activity状态发生变化的时候,例如退出后台、屏幕旋转等,使用commitAllowingStateLoss不会抛异常。
commitNow和commitNowAllowingStateLoss的区别
这两种提交方式,我们使用的好像比较少,我们看下他俩和前面的有啥区别。
java
@Override
public void commitNow() {
disallowAddToBackStack();
mManager.execSingleAction(this, false);
}
java
@Override
public void commitNowAllowingStateLoss() {
disallowAddToBackStack();
mManager.execSingleAction(this, true);
}
首先从源码中我们看到,这种提交方式是不允许将Fragment加入到回退栈的,在这个方法中,会将mAllowAddToBackStack设置为false。
java
@NonNull
public FragmentTransaction disallowAddToBackStack() {
if (mAddToBackStack) {
throw new IllegalStateException(
"This transaction is already being added to the back stack");
}
mAllowAddToBackStack = false;
return this;
}
那么这个时候,如果调用addToBackStack方法,因为mAllowAddToBackStack = false,此时就直接抛出异常。
java
@NonNull
public FragmentTransaction addToBackStack(@Nullable String name) {
if (!mAllowAddToBackStack) {
throw new IllegalStateException(
"This FragmentTransaction is not allowed to be added to the back stack.");
}
mAddToBackStack = true;
mName = name;
return this;
}
而且调用commitNow方法的时候,如果当前Fragment已经被加入到回退栈了,也会抛出异常。
核心代码 - 2
这是一个区别,接下来我们关注一下commit提交和commitNow提交的另一个区别。如果通过commit提交,那么最终调用这个方法scheduleCommit,我们看到是通过Handler来发送一个消息来异步执行事务的提交;
java
void scheduleCommit() {
synchronized (mPendingActions) {
boolean postponeReady =
mPostponedTransactions != null && !mPostponedTransactions.isEmpty();
boolean pendingReady = mPendingActions.size() == 1;
if (postponeReady || pendingReady) {
mHost.getHandler().removeCallbacks(mExecCommit);
mHost.getHandler().post(mExecCommit);
updateOnBackPressedCallbackEnabled();
}
}
}
那么commitNow在执行事务提交的时候,我们看下execSingleAction方法,发现是同步完成的,所以两者的另一个区别就是执行事务时,commit是异步操作,而commitNow是同步的。
```java
void execSingleAction(@NonNull OpGenerator action, boolean allowStateLoss) {
if (allowStateLoss && (mHost == null || mDestroyed)) {
// This FragmentManager isn't attached, so drop the entire transaction.
return;
}
ensureExecReady(allowStateLoss);
if (action.generateOps(mTmpRecords, mTmpIsPop)) {
mExecutingActions = true;
try {
removeRedundantOperationsAndExecute(mTmpRecords, mTmpIsPop);
} finally {
cleanupExec();
}
}
updateOnBackPressedCallbackEnabled();
doPendingDeferredStart();
mFragmentStore.burpActive();
} ```
所以这个会解决什么问题呢?熟悉的Handler的伙伴们应该知道,所有Handler发送的消息都会存在MessageQueue中,Looper通过loop方法从MessageQueue中取出事件并执行,所以当我们通过commit去提交添加一个Fragment的时候,如果还没有执行到这个事件,就通过findFragmentByTag or findFragmentById去查找这个Fragment就会找不到,有没有伙伴们碰到过这个问题?
所以如果我们业务场景中必须要保证要拿到这个Fragment,那么建议使用commitNow这个提交方式,但是需要注意回退栈的问题,我们可以通过反射的方式,将mAllowAddToBackStack设置为true,避免抛出异常。但是这种方式也需要根据场景酌情使用,因为频繁地使用commitNow可能会导致卡顿。
1.3 Fragment状态保存
当我们的应用发生异常,或者Activity的状态发生变化时,我们想保存Fragment的状态,以便后续的展示,那么我们先看下 Activity # onSaveInstanceState方法是怎么实现的。 ```java protected void onSaveInstanceState(@NonNull Bundle outState) { outState.putBundle(WINDOW_HIERARCHY_TAG, mWindow.saveHierarchyState());
outState.putInt(LAST_AUTOFILL_ID, mLastAutofillId);
// 1
Parcelable p = mFragments.saveAllState();
if (p != null) {
outState.putParcelable(FRAGMENTS_TAG, p);
}
if (mAutoFillResetNeeded) {
outState.putBoolean(AUTOFILL_RESET_NEEDED, true);
getAutofillManager().onSaveInstanceState(outState);
}
dispatchActivitySaveInstanceState(outState);
} ```
首先,我们看调用了mFragments的saveAllState方法,mFragments还是我们之前看到的FragmentController,调用了还是FragmentManager的saveAllState方法。 ```java Parcelable saveAllState() { // Make sure all pending operations have now been executed to get // our state update-to-date. forcePostponedTransactions(); endAnimatingAwayFragments(); execPendingActions(true);
mStateSaved = true;
mNonConfig.setIsStateSaved(true);
// First collect all active fragments.
ArrayList<FragmentState> active = mFragmentStore.saveActiveFragments();
if (active.isEmpty()) {
if (isLoggingEnabled(Log.VERBOSE)) Log.v(TAG, "saveAllState: no fragments!");
return null;
}
// Build list of currently added fragments.
ArrayList<String> added = mFragmentStore.saveAddedFragments();
// Now save back stack.
BackStackState[] backStack = null;
if (mBackStack != null) {
int size = mBackStack.size();
if (size > 0) {
backStack = new BackStackState[size];
for (int i = 0; i < size; i++) {
backStack[i] = new BackStackState(mBackStack.get(i));
if (isLoggingEnabled(Log.VERBOSE)) {
Log.v(TAG, "saveAllState: adding back stack #" + i
+ ": " + mBackStack.get(i));
}
}
}
}
FragmentManagerState fms = new FragmentManagerState();
fms.mActive = active;
fms.mAdded = added;
fms.mBackStack = backStack;
fms.mBackStackIndex = mBackStackIndex.get();
if (mPrimaryNav != null) {
fms.mPrimaryNavActiveWho = mPrimaryNav.mWho;
}
fms.mResultKeys.addAll(mResults.keySet());
fms.mResults.addAll(mResults.values());
fms.mLaunchedFragments = new ArrayList<>(mLaunchedFragments);
return fms;
} ``` 首先拿到当前页面展示的Fragment,并将其封装为FragmentState,返回的是一个列表;然后拿到通过事务添加进来的全部Fragment的UUID集合,最终创建一个FragmentManagerState类,然后将全部的Fragment的状态存储到FragmentManagerState中,最终返回的序列化数据就是FragmentManagerState。
那么恢复数据,其实就是一个反序列化的过程,通过拿到FragmentManagerState数据之后,恢复所有Fragment在销毁之前的状态。
这里需要注意一点,当系统恢复Fragment的时候,是采用反射的方式进行Fragment的创建,此时是通过newInstance()的方式完成的,所以Fragment一定要有一个空参构造方法,否则直接抛异常。
1.4 Fragment回退栈管理
如果阅读过Navigation源码,我们会发现,当执行commit之前,都会将Fragment加入回退栈,那么将Fragment添加到回退栈和不添加到回退栈,有什么区别呢?
我们看下面这个场景,当创建Fragment01之后,点击按钮跳转到Fragment02,此时我们看当Fragment02展示之后,Fragment01直接走了销毁的流程,而且已经调用了onDestroy方法。
java
2023-02-11 18:35:56.070 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onAttach
2023-02-11 18:35:56.071 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onCreate
2023-02-11 18:35:56.072 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onCreateView
2023-02-11 18:35:56.085 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onViewCreated
2023-02-11 18:35:56.095 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onResume
2023-02-11 18:36:45.065 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onPause
2023-02-11 18:36:45.068 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onStop
2023-02-11 18:36:45.072 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onAttach
2023-02-11 18:36:45.075 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onCreate
2023-02-11 18:36:45.079 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onCreateView
2023-02-11 18:36:45.118 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onViewCreated
2023-02-11 18:36:45.138 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onDestroyView
2023-02-11 18:36:45.162 30604-30604/com.lay.learn.asm E/TAG: Fragment01 onDestroy
2023-02-11 18:36:45.165 30604-30604/com.lay.learn.asm E/TAG: Fragment02 onResume
当我们将Fragment01加入到回退栈之后,我们发现,Fragment01好像并没有调用onDestory方法,仅仅是将View销毁了
java
2023-02-11 18:41:05.538 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onAttach
2023-02-11 18:41:05.540 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onCreate
2023-02-11 18:41:05.542 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onCreateView
2023-02-11 18:41:05.560 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onViewCreated
2023-02-11 18:41:05.576 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onResume
2023-02-11 18:41:09.784 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onPause
2023-02-11 18:41:09.787 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onStop
2023-02-11 18:41:09.788 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onAttach
2023-02-11 18:41:09.790 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onCreate
2023-02-11 18:41:09.796 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onCreateView
2023-02-11 18:41:09.811 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onViewCreated
2023-02-11 18:41:09.819 30912-30912/com.lay.learn.asm E/TAG: Fragment01 onDestroyView
2023-02-11 18:41:09.837 30912-30912/com.lay.learn.asm E/TAG: Fragment02 onResume
那么此时,我们点击返回按钮,这个时候我们发现Fragment01生命周期是从头重新执行了吗?并没有,而是直接从onCreateView开始,没有执行onCreate。
```java 2023-02-11 19:04:42.886 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onAttach 2023-02-11 19:04:42.887 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreate 2023-02-11 19:04:42.888 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreateView 2023-02-11 19:04:42.897 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onViewCreated 2023-02-11 19:04:42.908 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onResume 2023-02-11 19:04:45.572 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onPause 2023-02-11 19:04:45.572 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onStop 2023-02-11 19:04:45.573 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onAttach 2023-02-11 19:04:45.574 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onCreate 2023-02-11 19:04:45.574 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onCreateView 2023-02-11 19:04:45.582 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onViewCreated 2023-02-11 19:04:45.585 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onDestroyView 2023-02-11 19:04:45.588 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onResume 2023-02-11 19:04:46.874 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onPause 2023-02-11 19:04:46.875 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onStop 2023-02-11 19:04:46.875 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onCreateView 2023-02-11 19:04:46.881 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onViewCreated 2023-02-11 19:04:46.883 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onDestroyView 2023-02-11 19:04:46.884 25027-25027/com.lay.learn.asm E/TAG: Fragment02 onDestroy 2023-02-11 19:04:46.885 25027-25027/com.lay.learn.asm E/TAG: Fragment01 onResume
```
所以加入回退栈的作用,我给伙伴们总结一下:
(1)通过replace的方式执行页面之间的切换,加入回退栈能够避免数据丢失(onDestory时ViewModel数据会被清除),防止页面被直接销毁;
(2)加入回退栈更符合用户行为逻辑,从哪个页面来返回就返回哪个页面,而且不会重复调用onCreate方法,因此可以放网络请求的逻辑,避免多次接口请求。
我们这里带一下Navigation的回退栈管理 ```kotlin private fun navigate( entry: NavBackStackEntry, navOptions: NavOptions?, navigatorExtras: Navigator.Extras? ) { val initialNavigation = state.backStack.value.isEmpty() val restoreState = ( navOptions != null && !initialNavigation && navOptions.shouldRestoreState() && savedIds.remove(entry.id) ) if (restoreState) { // Restore back stack does all the work to restore the entry fragmentManager.restoreBackStack(entry.id) state.push(entry) return } val ft = createFragmentTransaction(entry, navOptions)
if (!initialNavigation) {
ft.addToBackStack(entry.id)
}
if (navigatorExtras is Extras) {
for ((key, value) in navigatorExtras.sharedElements) {
ft.addSharedElement(key, value)
}
}
ft.commit()
// The commit succeeded, update our view of the world
state.push(entry)
} ``` 这里有个变量需要注意一下:initialNavigation,它是一个boolean类型,判断当前回退栈是否为空,如果是第一次使用,那么就为空,此时不会给当前页面添加回退栈。这里其实很好了解,如果把起点加入回退栈,那么在返回的时候,起点其实已经没有上级页面了,就不知道要往哪跳,所以系统会生成一个空白页面,这里大家可以使用一下。
当然有些问题还是避免不了,因为如果加入回退栈,那么Fragment的onCreateView可能会被多次执行,会导致页面的状态发生变化,无法保留上次页面跳转时状态,页面会被刷新,因此可以考虑使用hide show的方式来进行页面状态管理。
2 Fragment常见问题解决
这个模块我主要介绍一下我们在日常开发中经常会遇到的问题
2.1 Can not perform this action after onSaveInstanceState
在调用commit方法的时候,因为allowStateloss为false,所以需要检查状态。
java
private void checkStateLoss() {
if (isStateSaved()) {
throw new IllegalStateException(
"Can not perform this action after onSaveInstanceState");
}
}
java
public boolean isStateSaved() {
// See saveAllState() for the explanation of this. We do this for
// all platform versions, to keep our behavior more consistent between
// them.
return mStateSaved || mStopped;
}
如果在当前页面发起网络请求,等到请求结果之前可能会有耗时,然后此时跳转到了下一个页面,我们知道这个页面的生命周期会走到onDestoryView,此时会触发onSaveInstance方法,mStateSaved会设置为true,那么此时如果在拿到结果之后又进行了一次commit,就直接回抛出异常。
所以对于commit提交来说,不建议在子线程中进行;如果确实需要这种操作,那么就建议使用commitAllowingStateLoss。
可能很多伙伴也会好奇,在实际开发中这种问题很难碰到,一翻bugly就会看到好多线上用户报这个问题。这个就是用户场景我们无法cover全覆盖,用户可能用2G、3G网络就会出现网络加载缓慢的问题。
2.2 Fragment的重叠问题
这种问题其实如果了解系统的恢复机制,应该还是很好避免。为什么会出现Fragment重叠的问题呢?首先我们做的时候是在Activity # onCreate方法中进行add操作。 ```kotlin override fun onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_my_fragment_actvity) fl_fg = findViewById(R.id.fl_fg) btn_jump = findViewById(R.id.btn_jump)
btn_jump.setOnClickListener {
val transient = supportFragmentManager.beginTransaction()
transient.replace(R.id.fl_fg,Fragment02())
transient.addToBackStack(null)
transient.commit()
}
//事务管理
val beginTransaction = supportFragmentManager.beginTransaction()
beginTransaction.add(R.id.fl_fg, Fragment01())
beginTransaction.addToBackStack("Fragment01")
beginTransaction.commit()
} ``` 如果此时屏幕进行旋转,前提是在没有任何配置的情况下,Activity会被销毁重建,此时按照我们在1.3小节中对于Fragment状态保存的了解,此时会将Fragment的状态保存为FragmentManagerState并将其序列化,在Activity重建之后,onCreate中会获取FragmentManagerState并重建Fragment,此时其实系统已经帮我们重建了Fragment,但是我们在onCreate中再次进行了add操作,此时就会造成Fragment叠加。
其实我们了解这个机制之后就很好解决了,首先第一种方案:在onSaveInstanceState方法中,不去保存Fragment的状态,但是这种方案可能会有风险,因为一刀切可能会影响其他的功能。
另一种就是调用add的时机,当savedInstanceState为空的时候,一般就是首次进来的时候,这个时候就可以执行add;但是如果是重建状态下,savedInstanceState不为空,就不需要自行add,使用系统帮我们恢复的那一份就行。 ```kotlin if (savedInstanceState == null) { //事务管理 val beginTransaction = supportFragmentManager.beginTransaction() beginTransaction.add(R.id.fl_fg, Fragment01()) beginTransaction.addToBackStack("Fragment01")
beginTransaction.commit()
} ```
除此之外,之前在使用Navigation的时候,因为官方的那种方式是采用replace的方式会导致View的状态丢失,因此自定义了一个FragmentNavigator,但是落实到项目中的时候,发现一个重叠的问题。 Android进阶宝典 -- JetPack Navigation的高级用法(解决路由跳转新建Fragment页面问题)
```kotlin val ft = fragmentManager.beginTransaction() val currentFragment = fragmentManager.primaryNavigationFragment KLog.d(TAG,"currentFragment $currentFragment") //将当前Fragment隐藏 if (currentFragment != null) { ft.hide(currentFragment) } //获取目的地Fragment val destinationId = destination.id.toString() var nextFragment = fragmentManager.findFragmentByTag(destinationId)
if (nextFragment != null) { ft.show(nextFragment) } else { //说明当前Fragment没有被创建过 nextFragment = fragmentManager.fragmentFactory.instantiate(context.classLoader, className) nextFragment.arguments = args ft.add(containerId, nextFragment, destinationId) } ``` 因为官方提交事务都是commit,所以自定义Navigator的时候,事务提交也是采用的commit;所以从1.2小节中我们对于commit的原理的认知,这是一个异步的过程,看下图:
首先Fragment1为起点,在加载路由表的时候,先将Fragment add到NavHostFragment中;因为commit是一个异步的过程可能有延迟,此时调用navigate从Fragment1跳转到Fragment2,按照上面代码中的逻辑,首先会调用primaryNavigationFragment获取当前页面实例(Fragment1),此时因为commit延迟导致没有获取到,此时currentFragment = null,隐藏失败!
那么当加载完成Fragment2的时候,Fragment1也加载完成,此时两个页面就发生了重叠;所以这种情况下,就需要考虑使用commitNow做同步处理,但是需要注意使用commitNow就不允许加入回退栈,这里还需要考虑使用反射将标志位取反。
目前我在业务场景中做的处理是在Fragment1调用onAttach的时候,此时Fragment已经创建,然后调用navigate进行跳转。
当然还有一种Fragment重叠的问题,就是多次调用add往同一个containerId中添加,此时Fragment就会全部重叠到一起,但是这种情况下,不会影响任意一个Fragment的生命周期,即便是下面的Fragment已经不可见了;而replace则是会将当前容器中Fragment销毁,然后再添加新的Fragment,这就是add和replace的区别。
这一篇文章原理性的东西比较多,但是使用上很少介绍,相信大部分的伙伴们应该都了解使用方式,但是在使用的时候可能都会遇到一些问题,如果熟悉了其中的原理,定位问题也会比较迅速,而且在使用api的时候也会更加谨慎。