来来来,快速撸 Redis 一遍!

语言: CN / TW / HK

theme: condensed-night-purple

原创:小姐姐味道(微信公众号ID:xjjdog),欢迎分享,转载请保留出处。

年底了,你发年终奖了么?是不是很不爽?不管是被动毕业还是主动毕业,生活还得继续是不是?

作为程序员,那就离不开Redis,谁让不争气的磁盘还是那么慢呢?要过了面试这道坎,Redis必须掌握好。除了会用,还得了解它背后的原理。

为啥?因为大家现在都在养蛊。人生在世,诸多无奈。逆水行舟,不进则退。

如果你读过Redis相关的书籍,本文就帮你快速的撸一遍。没读过也不要紧,缺啥补啥。

redis能力: - 1 0W/s QPS (redis-benchmark) - 1w+ 长链接 (netstat / ss) - 最复杂的Zset 6kw数据 写入1k/s 读取5k/s 平均耗时5ms - 持久化 (rdb)

1. 基本概览

学习一门新语言,重要的是掌握它的基本数据结构,以及这些数据结构的API。redis的这些数据结构,就类似一门语言。

Redis数据结构

常用5种,一共10种。面试时一般回答5种即可,但其他5种是加分项。

  • String字符串
  • Hash 字典
  • List 列表
  • Set集合
  • ZSet 有序集合。性能参考:《redis的zset有多牛?请把耳朵递过来》
  • Pubsub 发布订阅 (不推荐使用,坑很多)
  • Bitmap 位图
  • GEO 地理位置 (有限使用,附近的人)
  • Stream 流(5.0) (与Kafka非常像)
  • Hyperloglog 基数统计

Redis的协议

Redis是文本协议

  • RESP 以CRLF结尾(\r\n)
  • RESP3 (redis6启用,增加客户端缓存)

Redis底层数据结构

数据量较小和大数据量的时候,往往不同,关注大数据量的主要结构。

  • String-sds
  • Hash-(ziplist , dict)
  • Set-(intset,dict)
  • List-(ziplist,quicklist)
  • ZSet-(ziplist+skiptable 跳表)
  • Stream-(radix-tree 基数数)

跳表的关注度比较大,在Java中,可以参考类似ConcurrentSkipListMap实现。

另:Java中有序Set叫做TreeSet,但是用红黑树实现的,注意区别。

Redis持久化方式

生产环境,一般仅采用RDB模式。

  • RDB
  • AOF (类似Binglog row模式)
  • 混合模式:RDB+AOF

O(n)指令

  • keys *
  • hgetall
  • smembers
  • sunion
  • ...

建议在集合大小不确定的时候,使用scan hscan sscan zscan 替代。另外,像keys这种危险命令,最好使用RENAME指令给屏蔽掉。

性能优化

  • unlink删除key -> 异步避免阻塞
  • pipeline批量传输,减少网络RTT ->减少频繁网络交互
  • 多值指令(mset,hmset)-> 减少频繁网络交互
  • 关掉aof -> 避免io_wait

扩展方式

  • lua
  • redis-module

module模式知道的人比较少,属于比较底层的开发。

2. 问题排查

  • monitor指令 回显所有执行的指令。可以使用grep配合过滤
  • keyspace-events 订阅某些Key的事件。比如,删除某条数据的事件,底层实现基于pubsub
  • slow log 顾名思义,满查询,非常有用
  • --bigkeys启动参数 Redis大Key健康检查。使用的是scan的方式执行, 不用担心阻塞
  • memory usage keymemory stats 指令
  • info指令,关注instantaneous_ops_per_secused_memory_humanconnected_clients
  • redis-rdb-tools rdb线下分析

3. 淘汰策略

如果你应聘的是redis dba,这道题答不出来,直接淘汰。

  1. 被动删除 (只有被get到的时候,删除并返回NIL 属于惰性删除)
  2. 主动删除 (100ms运行一次,随机删除持续25ms,类似Cron)
  3. ->内存使用超过maxmemory,触发主动清理策略

针对于第三种情况,有8种策略。注意,redis已经有LFU了。

  1. 默认volatile-lru 从设置过期数据集里查找最近最少使用
  2. volatile-ttl 从设置过期的数据集里面优先删除剩余时间短的Key
  3. volatile-random 从设置过期的数据集里面任意选择数据淘汰
  4. volatile-lfu 从过期的数据集里删除 最近不常使用 的数据淘汰
  5. allkeys-lru
  6. allkeys-lfu
  7. allkeys-random 数据被使用频次最少的,优先被淘汰
  8. no-enviction

如果不设置maxmemory,Redis将一直使用内存,直到触发操作系统的OOM-KILLER。

4. 集群模式

  1. 单机
  2. 单机多实例
  3. 主从(1+n)
  4. 主从(1+n)& 哨兵(3或者基数个)
  5. Redis Cluster (推荐,但使用有限制)。参考:《与亲生的Redis Cluster,来一次亲密接触》

互联网建议使用Redis Cluster,外包、项目随意。

具体搭建过程,请参考:《好慌,Redis这么多集群方案,要用哪种?》

大规模

  • twemproxy
  • codis
  • 基于Netty Redis协议自研
  • 管理平台:CacheCloud

5. Redis常见问题

Redis使用场景

  • 缓存 (缓存一致性 缓存穿透 缓存击穿 缓存雪崩)
  • 分布式锁 (redlock)
  • 分布式限流
  • Session

API举例:

  • zset 排行榜,排序
  • bitmap 用户签到,在线状态
  • geo 地理位置,附近的人
  • stream 类似kafka的消息流
  • hyperloglog 每日访问ip数统计

缓存一致性

为什么有一致性问题?

  • 写入。缓存和数据库是两个不同的组件,只要涉及到双写,就存在只有一个写成功的可能性,造成数据不一致。
  • 更新。更新的情况类似,需要更新两个不同的组件。
  • 读取。读取要保证从缓存中读到的信息是最新的,是和数据库中的是一致的。
  • 删除。当删除数据库记录的时候,如何把缓存中的数据也删掉?

建议使用:Cache Aside Pattern

读请求: - 先读cache,再读db

变更操作: - 先操作数据库,再 淘汰 缓存

涉及到复杂的事务和回滚操作,可以把淘汰放在finally里。

问题:缓存淘汰失败!(概率很低 ,定时补偿)

缓存击穿

影响,轻微。

高流量下 大量请求读取一个失效的Key -> Redis Miss -> 穿透到DB

解决方式:采用分布式锁,只有拿到锁的第一个线程去请求数据库,然后插入缓存

缓存穿透

影响,一般。

访问一个不存在的Key(恶意攻击)-> Redis Miss -> 穿透到DB

解决方式: 1. 给相应的Key设置一个Null值,放在缓存中 2. BloomFilter预先判断

缓存雪崩

影响:严重。

大量Key同时失效 | 2.Redis当机 -> Redis Miss -> 压力打到DB

解决方式: 1. 给失效时间加上相对的随机数 2. 保证Redis的高可用

分布式锁

redis的分布式锁,并不是那么简单。建议使用redisson的redlock。最基础的指令是setnx。

bash setnx-> SET key value [EX seconds|PX milliseconds|KEEPTTL] [NX|XX] [GET]

分布式锁 关键点: - 原子性 - 锁超时 - 死锁 - 读写锁 - 故障转移

最简单的Redis分布式锁代码(不严谨)。

java端代码模拟lock和unlock。

java public String lock(String key, int timeOutSecond) { for (; ; ) { String stamp = String.valueOf(System.nanoTime()); boolean exist = redisTemplate.opsForValue().setIfAbsent(key, stamp, timeOutSecond, TimeUnit.SECONDS); if (exist) { return stamp; } } } public void unlock(String key, String stamp) { redisTemplate.execute(script, Arrays.asList(key), stamp); }

lua脚本unlock。

lua local stamp = ARGV[1] local key = KEYS[1] local current = redis.call("GET",key) if stamp == current then redis.call("DEL",key) return "OK" end

6. Redis使用

常用Java客户端

  • lettuce SpringBoot默认,基于Netty的事件驱动模型
  • jedis 老牌的客户端,使用commons-pool来完成线程池开发
  • redisson 非常丰富的分布式数据结构,包括锁,分布式Map等。大量使用Lua脚本️

详细分析:Redis都要老了,你还在用什么古董客户端?

使用规范

根据公司情况自定义裁剪,没有万能的规范。更多:

这可能是最中肯的Redis规范了

  • 使用连接池,不要频繁创建关闭客户端连接
  • 消息大小限制 消息体在10kb以下,可以使用snappy、msgpack等压缩
  • 避免大key和hot key
  • 不使用O(n)指令
  • 不使用不带范围的Zrange指令
  • 不使用database(容易覆盖数据)
  • 不使用高级数据结构(使用基本的5种)
  • 不使用事务操作
  • 禁止长时间monitor

springboot cache redis

  • 使用时更要注意规范性
  • cache层抽象层次太高,如需要操作底层的数据结构,直接使用redisTemplate

Redis是多线程?

要看哪个阶段。数据操作阶段,一直是单线程的,哪怕是redis6。

这篇文章分析了这个过程:和 杠精 聊Redis多线程 :(

End

祝好运!如有帮助,请不吝赐赞。

作者简介:小姐姐味道 (xjjdog),一个不允许程序员走弯路的公众号。聚焦基础架构和Linux。十年架构,日百亿流量,与你探讨高并发世界,给你不一样的味道。我的个人微信xjjdog0,欢迎添加好友,​进一步交流。​