CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架

语言: CN / TW / HK

作者:董小威

武汉大学

AI模型存在偏见怎么办?

近年来,AI在多个领域展现出卓越的性能,给人类生活带来便捷和改善。

与此同时,不少AI系统被发现存在对特定群体的偏见或者歧视现象。

犯罪预测系统COMPAS在美国被广泛使用,通过预测再次犯罪的可能性来指导判刑。

研究者发现,相比于白人,黑人被预测为高暴力犯罪风险的可能性竟然高 77% 。这里就存在一个严肃的问题:犯罪与否难道能由肤色来决定?

我们经常使用的搜索引擎也普遍存在偏见。如果搜索 “护士” 的图片,返回的结果中大部分都是女性。

亚马逊的员工招聘系统,被曝出倾向于给男性打高分,给女性打低分。

为什么AI系统存在偏见?它是如何学会的?多半是数据教会了它。

例如,在亚马逊的雇员数据中,男性远多于女性,导致AI学到了性别和录用间的虚假关联,误以为男性更有资格被录用。

针对这一问题,研究者提出了多种公平性提升方案,但它们本质上都要修改已部署的深度学习模型。

“如果已部署上线的深度学习模型存在偏见,如何在不修改模型的情况下提升公平性呢?”浙江大学王志波教授提出了这个问题。

针对该问题,浙大王志波和任奎团队联合武汉大学、蚂蚁集团与Adobe公司,提出了一种基于对抗性扰动的深度学习模型公平性提升方案,在无须改变已部署模型的情况下提升系统的公平性。

该方案的基本思想是: 通过自适应地对输入数据添加对抗性扰动,阻止模型提取出敏感属性相关信息,保留目标任务相关信息,从而使得模型公平地对待不同敏感属性的群体,给出公平的预测结果。

公平性提升方案FAAP

FAAP框架包含 已部署的模型扰动生成器判别器 三个部分:

首先,用 扰动生成器 对图像添加对抗性扰动,扰动后的图像会输入到部署模型的特征提取器,获得图像的隐空间表示,并分别输入到标签预测器和判别器。

接着衡量扰动后的图像中包含的 敏感属性 的信息,训练判别器从隐空间表示中预测敏感属性,并对判别器进行更新。

之后对扰动生成器进行更新,欺骗判别器,使扰动后的图像在隐空间表示中不包含敏感属性的信息,同时使标签预测器的预测结果准确。

对以上步骤进行迭代,获得最终的扰动生成器,作为数据预处理单元,为已有的AI系统提升公平性。

模型预测真的变公平了吗?

使用 T-SNE 处理模型特征空间的输出,可以发现,带有性别偏见的模型,在特征空间能分辨出原始图像中不同性别的样本,因而区别对待不同性别的人群。相比之下,该方案让具有不同敏感属性的样本在特征空间发生混淆,使得它们被模型公平对待:

该项研究首次考虑在不改变深度学习模型的前提下提升公平性,提出的方案更贴合真实应用场景。

对于一般的部署模型,在基本不影响准确率的情况下,该方案可以大幅提升公平性,例如,在公平性指标DP和DEO上平均能够获得27.5%和66.1%的提升。

目前,该研究成果的相关论文“Fairness-aware Adversarial Perturbation Towards Bias Mitigation for Deployed Deep Models”已被CVPR 2022录用。

论文地址:

https://arxiv.org/abs/2203.01584

「人工智能」、「智能汽车」 微信社群邀你加入!

欢迎关注人工智能、智能汽车的小伙伴们加入我们,与AI从业者交流、切磋,不错过最新行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~

点这里 :point_down: 关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~ 返回搜狐,查看更多

责任编辑: