簡單好用的個人圖書管理系統;開源啦!北大NLP新手教程;『Rust命令行編程指南』隨書代碼;源代碼結構可視化工具 | ShowMeAI資訊日報
工具&框架
🚧 『Emerge』源碼分析和依賴可視化工具
http://github.com/glato/emerge
Emerge(或emerge-viz)是一個代碼分析工具,它可以分析源代碼結構、度量、依賴關係和軟件項目複雜性。你可以用它來掃描一個項目的源代碼,計算度量結果和統計數據,將源代碼映射到圖形結構(如依賴關係圖或文件系統圖),以其他文件格式導出結果,甚至創建一個交互式網絡應用程序來進一步探索。
Emerge主要用 Python 3 編寫,並在 MacOS、Linux和各種瀏覽器(Safari、Chrome、Firefox、Edge)上測試通過。目前支持以下語言:C、C++、Groovy、Java、JavaScript、TypeScript、Kotlin、ObjC、Ruby、Swift、Python。
🚧 『Tale Book: My Calibre WebServer』簡單好用的個人圖書管理系統
http://github.com/talebook/talebook
Tale Book 是一個基於Calibre的簡單的個人圖書管理系統,具備書籍管理、在線閲讀與推送、用户管理、SSO登錄、從百度/豆瓣拉取書籍信息等功能。
Tale Book 開源項目具備諸多優勢:界面美觀、支持多用户、支持在線閲讀、支持批量掃描導入書籍、支持郵件推送、支持OPDS、支持一鍵安裝、支持快捷更新書籍信息、支持私人模式等。
🚧 『PyTorch Metric Learning』PyTorch 深度度量學習庫
http://github.com/KevinMusgrave/pytorch-metric-learning
http://kevinmusgrave.github.io/pytorch-metric-learning/
PyTorch Metric Learning 是一個幫助大家方便使用深度計量學習的工具庫。具備模塊化、靈活、可擴展的特點,由 PyTorch 編寫完成。它包含9個模塊,每個模塊都可以在你現有的代碼庫中獨立使用,或者結合在一起,形成一個完整的訓練/測試工作流程。
🚧 『VITS + BigVGAN + SpanPSP 中文TTS』基於 PyTorch 的 VITS-BigVGAN 的 TTS 中文模型
http://github.com/Zz-ww/VITS-BigVGAN-SpanPSP-Chinese
該項目實現 VITS + BigVGAN 端到端的中文 TTS 模型,推理階段加入中文韻律預測模型,實現的帶韻律預測的中文 TTS 模型。
🚧 『JSON structural diff』JSON文件結構化diff工具
http://github.com/andreyvit/json-diff
JSON structural diff 是一個對 json 數據進行比對差異化的工具,簡單易用。
博文&分享
👍 『Command-Line Rust』Rust 命令行編程指南·隨書代碼
http://github.com/kyclark/command-line-rust
這是 Ken Youens-Clark 撰寫的 O'Reilly 的『Command-Line Rust』書對應的代碼集。
連續幾年來,Rust在Stack Overflow的年度開發者調查中被評為『最受喜愛的編程語言』。這種開源的系統編程語言現在被用於從遊戲引擎和操作系統到瀏覽器組件和虛擬現實模擬引擎的所有方面。但是,Rust也是一種極其複雜的語言,其學習難度是眾所周知的。
本指南沒有把重點放在整個語言上,而是在每一章用一個小的、完整的、有重點的程序示例來教Rust。作者Ken Youens-Clark向你展示瞭如何開始、編寫和測試每一個程序以創建一個成品。你將學習如何處理Rust中的錯誤,讀寫文件,以及使用正則表達式、Rust類型、結構等等。
👍 『PKU TANGENT NLP Tutorial』北大 NLP 新手入門教程
http://github.com/PKU-TANGENT/nlp-tutorial
這是北京大學 TANGENT 實驗室(Text ANalysis and GENeration Technology Group at Peking University)的一份 NLP 教程,提供了一條學習&實踐路徑,並有對應的資料鏈接。教程包含三大部分:
- 1)基礎知識
- 機器學習
- 深度學習
- 自然語言處理
- 2)文獻閲讀
- Google Scholar
- 會議論文
- 前沿進展
- 工具
- 3)動手實踐
- 任務一:基於深度學習的文本分類
- 任務二:基於 LSTM-CRF 的命名實體識別
- 任務三:Neural Machine Translation (NMT)
- 任務四:Transformer & PLM
數據&資源
🔥 『Awesome Fluid Dynamics』流體動力學相關資源列表
http://github.com/lento234/awesome-fluid-dynamics
http://manickathan.ch/awesome-fluid-dynamics/
列表包含以下主題:
- Meshing / 網格劃分
- Computational Fluid Dynamics / 計算流體力學
- Experimental Fluid Dynamics / 實驗性流體動力學
- Post-processing and Data Analysis / 後處理和數據分析
- Visualization / 視覺化
- Benchmarks and Datasets / 基準和數據集
- Reproducibility / 可重複性
🔥 『Awesome Inpainting Tech』圖像補全相關文獻資源列表
http://github.com/zengyh1900/Awesome-Image-Inpainting
列表包含以下主題:
- Image Inpainting / 圖像補全
- Classical methods (Non-learning based) / 經典方法
- Deep Architectures (Learning Based) / 深度架構
- Video Inpainting / 視頻補全
- Classical methods (Non-learning based) / 經典方法
- Deep Architectures (Learning Based) / 深度架構
- Challenge / 挑戰
研究&論文
公眾號後台回覆關鍵字 日報,免費獲取整理好的論文合輯。
科研進展
- 2022.09.01 『模板匹配』 AccoMontage2: A Complete Harmonization and Accompaniment Arrangement System
- 2022.09.02 『基因組學』 genomepy: genes and genomes at your fingertips
- 2022.08.16 『自然語言處理』 Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries
⚡ 論文:AccoMontage2: A Complete Harmonization and Accompaniment Arrangement System
論文時間:1 Sep 2022
領域任務:Template Matching,模板匹配
論文地址:http://arxiv.org/abs/2209.00353
代碼實現:http://github.com/billyblu2000/accomontage2
論文作者:Li Yi, Haochen Hu, Jingwei Zhao, Gus Xia
論文簡介:We propose AccoMontage2, a system capable of doing full-length song harmonization and accompaniment arrangement based on a lead melody./我們提出了AccoMontage2,一個能夠在主旋律的基礎上進行全曲和聲和伴奏編排的系統。
論文摘要:我們提出了AccoMontage2,一個能夠根據主旋律進行全曲和聲和伴奏編曲的系統。繼AccoMontage之後,本研究的重點是生成流行/民謠歌曲的鋼琴編曲,並採用了基於模板的通用檢索方法。本研究的創新之處在於兩個方面。首先,我們發明了一個和聲模塊(AccoMontage沒有這個模塊)。這個模塊通過優化和平衡三個損失項來生成結構化和連貫的全長和絃進展:微觀層面的音符不和諧損失,中觀層面的樂句模板匹配損失,以及宏觀層面的全曲連貫性損失。第二,我們開發了一個圖形用户界面,允許用户選擇不同風格的和絃進展和鋼琴紋理。目前,和絃進展風格包括流行、R&B和黑暗,而鋼琴紋理風格包括幾個級別的聲音密度和節奏的複雜性。實驗結果表明,我們的和聲和編曲結果都大大超過了基線的表現。最後,我們將AccoMontage2作為一個在線應用程序發佈,並將有組織的和絃行進模板作為一個公共數據集。
⚡ 論文:genomepy: genes and genomes at your fingertips
論文時間:2 Sep 2022
領域任務:Genomics, 基因組學
論文地址:http://arxiv.org/abs/2209.00842
代碼實現:http://github.com/vanheeringen-lab/genomepy
論文作者:Siebren Frölich, Maarten van der Sande, Tilman Schäfers, Simon J. van Heeringen
論文簡介:Analyzing a functional genomics experiment, such as ATAC-, ChIP- or RNA-sequencing, requires reference data including a genome assembly and gene annotation./分析功能基因組學實驗,如ATAC-、ChIP-或RNA測序,需要包括基因組組裝和基因註釋的參考數據。
論文摘要:分析功能基因組學實驗,如ATAC-、ChIP-或RNA測序,需要包括基因組組裝和基因註釋的參考數據。這些資源通常可以從不同的組織和不同的版本中檢索到。大多數生物信息學工作流程要求用户手動提供這些基因組數據,這可能是一個繁瑣和容易出錯的過程。這裏我們介紹genomepy,它可以為你的分析搜索、下載和預處理正確的基因組數據。Genomepy可以搜索NCBI、Ensembl、UCSC和GENCODE上的基因組數據,並比較可用的基因註釋,以便做出明智的決定。選定的基因組和基因註釋可以被下載,並以合理但可控的默認值進行預處理。額外的支持數據可以自動生成或下載,如對齊器索引、基因組元數據和黑名單。Genomepy開源在 http://github.com/vanheeringen-lab/genomepy 可通過pip或bioconda安裝。
⚡ 論文:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries
論文時間:16 Aug 2022
領域任務:自然語言處理
論文地址:http://arxiv.org/abs/2208.07638
代碼實現:http://github.com/thudm/kgtransformer
論文作者:Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong, Jie Tang
論文簡介:In this work, we present the Knowledge Graph Transformer (kgTransformer) with masked pre-training and fine-tuning strategies./在這項工作中,我們提出了知識圖譜轉化器(kgTransformer),該轉化器具有屏蔽式預訓練和微調策略。
論文摘要:知識圖(KG)嵌入一直是對不完整KG進行推理的主流方法。然而,受限於其固有的淺層和靜態架構,它們很難處理日益受到關注的複雜邏輯查詢,其中包括邏輯運算符、歸屬邊、多個源實體和未知中間實體。在這項工作中,我們提出了知識圖譜轉化器(kgTransformer),該轉化器具有屏蔽式預訓練和微調策略。我們設計了一個KG三重轉換方法,使Transformer能夠處理KG,並通過Mixture-of-Experts(MoE)稀疏激活進一步加強。然後,我們將複雜的邏輯查詢制定為掩碼預測,並引入兩階段的掩碼預訓練策略,以提高可轉移性和可推廣性。在兩個基準上的廣泛實驗表明,kgTransformer在九個領域內和領域外的推理任務上可以持續地超過基於KG嵌入的基線和高級編碼器。此外,kgTransformer可以通過提供完整的推理路徑來解釋給定的答案,從而實現可解釋性推理。
我們是 ShowMeAI,致力於傳播AI優質內容,分享行業解決方案,用知識加速每一次技術成長!
◉ 點擊 日報合輯,在公眾號內訂閲話題 #ShowMeAI資訊日報,可接收每日最新推送。
◉ 點擊 電子月刊,快速瀏覽月度合輯。
- 感謝飛書放過幕布!100個GPT-4實戰案例;GPT-4免費平替Poe;AI繪畫新手指南之SD篇;new Bing靠譜教程 | ShowMeAI日報
- whylogs工具庫的工業實踐!機器學習模型流程與效果監控 ⛵
- 脈脈瘋傳!2023年程序員生存指南;多款prompt效率加倍工具;提示工程師最全祕籍;AI裁員正在發生 | ShowMeAI日報
- 中國風?古典系?AI中文繪圖創作嚐鮮!⛵
- Python中內置數據庫!SQLite使用指南!
- Pandas中你一定要掌握的時間序列相關高級功能
- 數據科學家賺多少?數據全分析與可視化 ⛵
- 交互式儀表板!Python輕鬆完成!⛵
- ChatGPT!我是你的破壁人;比爾·蓋茨不看好Web3與元宇宙;FIFA押中4屆世界盃冠軍;GitHub今日熱榜 | ShowMeAI資訊日報
- ChatGPT要收費了;華爾街大裁員;阿里2023十大科技趨勢;小紅書元宇宙虛擬服飾被吐槽;GitHub今日熱榜 | ShowMeAI資訊日報
- AI創業時代!這9個方向有錢途;AIGC再添霸榜應用Lensa;美團SemEval2022冠軍方法分享;醫學圖像處理工具箱… | ShowMeAI資訊日報
- 噓!P站數據分析年報;各省市疫情感染進度條;愛奇藝推出元宇宙App;You推出AI聊天機器人;GitHub今日熱榜 | ShowMeAI資訊日報
- 美國公司裁員潮時間線◉科技寒冬可視化;3份報告回顧中國開發者2022;自動駕駛下半場,誰會衝出重圍 | ShowMeAI每週通訊 #005-01.07
- 副業月入過萬?數據有話説;掃地機器人發展到哪步了;疫情後要不要重返辦公室;淘寶元宇宙直播間;GitHub今日熱榜 | ShowMeAI資訊日報
- 大戰谷歌!微軟Bing引入ChatGPT;羊了個羊40萬年薪招研發;Debian徹底移除Python2;GitHub今日熱榜 | ShowMeAI資訊日報
- 酸了!樂視工作制改為四天半;高通新年裁員;AI繪畫公司開始倒閉;網易入股張藝謀元宇宙公司;GitHub今日熱榜 | ShowMeAI資訊日報
- 要麼幹要麼滾!推特開始裁員了;深度學習產品應用·隨書代碼;可分離各種樂器音源的工具包;Transformer教程;前沿論文 | ShowMeAI資訊日報
- 真實世界的人工智能應用落地——OpenAI篇 ⛵
- 陽過→陽康,數據裏的時代側影;谷歌慌了!看各公司如何應對ChatGPT;兩份優質AI年報;本週技術高光時刻 | ShowMeAI每週通訊 #003-12.24
- 用魔法打敗魔法!這件毛衣讓攝像頭看不到你;兩款酷炫的AI寫作軟件;快如閃電的B站下載工具;基於擴散模型的蛋白質設計 | ShowMeAI資訊日報