RocketMQ-存储设计

语言: CN / TW / HK

持续创作,加速成长!这是我参与「掘金日新计划 · 6 月更文挑战」的第30天,点击查看活动详情

Domain Model

领域模型(Domain Model)是对领域内的概念类或现实世界中对象的可视化表示。又称概念模型、领域对象模型、分析对象模型。它专注于分析问题领域本身,发掘重要的业务领域概念,并建立业务领域概念之间的关系。

图片11.png

Message

Message是RocketMQ消息引擎中的主体。messageId是全局唯一的。MessageKey是业务系统(生产者)生成的,所以如果要结合业务,可以使用MessageKey作为业务系统的唯一索引。

图片12.png

图片13.png

另外Message中的equals方法和hashCode主要是为了完成消息只处理一次(Exactly-Once)。

Exactly-Once是指发送到消息系统的消息只能被消费端处理且仅处理一次,即使生产端重试消息发送导致某消息重复投递,该消息在消费端也只被消费一次。

Topic

Tags是在同一Topic中对消息进行分类

subTopics==Message Queue,其实在内存逻辑中,subTopics是对Topics的一个拓展,尤其是在MQTT这种协议下,在Topic底下会有很多subTopics。

Queue

Queue是消息物理管理单位,比如在RocketMQ的控制台中,就可以看到每一个queue中的情况(比如消息的堆积情况、消息的TPS、QPS)

Offset

对于每一个Queue来说都有Offset,这个是消费位点。

Group

业务场景中,如果有一堆发送者,一堆消费者,所以这里使用Group的概念进行管理。

对应关系

Message与 Topic是多对一的关系,一个Topic可以有多个Message.

Topic到Queue是一对多的关系,这个也是方便横向拓展,也就是消费的时候,这里可以有很多很多的Queue.

一个Queue只有一个消费位点(Offset),所以Topic和Offset也是一对多的关系

Topic和Group也是多对多的关系。

消费并发度

从上面模型可以看出,要解决消费并发,就是要利用Queue,一个Topic可以分出更多的queue,每一个queue可以存放在不同的硬件上来提高并发。

热点问题(顺序、重复)

前面讲过要确保消息的顺序,生产者、队列、消费者最好都是一对一的关系。但是这样设计,并发度就会成为消息系统的瓶颈(并发度不够)

RocketMQ不解决这个矛盾的问题。理由如下:

  1. 乱序的应用实际大量存在

2。队列无序并不意味着消息无序

另外还有消息重复,造成消息重复的根本原因是:网络不可达(网络波动)。所以如果消费者收到两条一样的消息,应该是怎么处理?

RocketMQ不保证消息不重复,如果你的业务要严格确保消息不重复,需要在自己的业务端进行去重。

  1. 消费端处理消息的业务逻辑保持幂等性

  2. 确保每一条消息都有唯一的编号且保证消息处理成功与去重表的日志同时出现

消息存储结构

RocketMQ因为有高可靠性的要求(宕机不丢失数据),所以数据要进行持久化存储。所以RocketMQ 采用文件进行存储。

存储文件

图片14.png

1. commitLog:消息存储目录

  1. config:运行期间一些配置信息

  2. consumerqueue:消息消费队列存储目录

  3. index:消息索引文件存储目录

  4. abort:如果存在改文件则Broker非正常关闭

  5. checkpoint:文件检查点,存储CommitLog文件最后一次刷盘时间戳、consumerqueue最后一次刷盘时间,index索引文件最后一次刷盘时间戳。

消息存储结构

图片15.png

RocketMQ消息的存储是由ConsumeQueue和CommitLog配合完成 的,消息真正的物理存储文件是CommitLog,ConsumeQueue是消息的逻辑队列,类似数据库的索引文件,存储的是指向物理存储的地址。每 个Topic下的每个Message Queue都有一个对应的ConsumeQueue文件。

  1. CommitLog: 存储消息的元数据

  2. ConsumerQueue: 存储消息在CommitLog的索引

  3. IndexFile: 为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程

图片16.png

CommitLog

CommitLog 以物理文件的方式存放,每台 Broker 上的 CommitLog 被本机器所有 ConsumeQueue 共享,文件地址:$ {user.home} \store\$ { commitlog} \ $ { fileName}。在CommitLog 中,一个消息的存储长度是不固定的, RocketMQ采取一些机制,尽量向CommitLog 中顺序写 ,但是随机读。commitlog 文件默认大小为lG ,可通过在 broker 置文件中设置 mappedFileSizeCommitLog属性来改变默认大小。

图片17.png

Commitlog文件存储的逻辑视图如下,每条消息的前面4个字节存储该条消息的总长度。但是一个消息的存储长度是不固定的。

图片18.png

每个 CommitLog 文件的大小为 1G,一般情况下第一个 CommitLog 的起始偏移量为 0,第二个 CommitLog 的起始偏移量为 1073741824 (1G = 1073741824byte)。

图片19.png

每台Rocket只会往一个commitlog文件中写,写完一个接着写下一个。

indexFile 和 ComsumerQueue 中都有消息对应的物理偏移量,通过物理偏移量就可以计算出该消息位于哪个 CommitLog 文件上。

ConsumeQueue

ConsumeQueue 是消息的逻辑队列,类似数据库的索引文件,存储的是指向物理存储的地址。每个Topic下的每个 Message Queue 都有一个对应的 ConsumeQueue 文件, 文件地址在$ {$storeRoot} \consumequeue\$ {topicName} \$ { queueld} \$ {fileName}。

图片20.png

图片21.png

ConsumeQueue中存储的是消息条目,为了加速 ConsumeQueue 消息条目的检索速度与节省磁盘空间,每一个 Consumequeue条目不会存储消息的全量信息,消息条目如下:

图片22.png

ConsumeQueue 即为Commitlog 文件的索引文件, 其构建机制是 当消息到达 Commitlog 文件后 由专门的线程产生消息转发任务,从而构建消息消费队列文件(ConsumeQueue )与下文提到的索引文件。

存储机制这样设计有以下几个好处:

  1. CommitLog 顺序写 ,可以大大提高写入效率。(实际上,磁盘有时候会比你想象的快很多,有时候也比你想象的慢很多,关键在如何使用,使用得当,磁盘的速度完全可以匹配上网络的数据传输速度。目前的高性能磁盘,顺序写速度可以达到600MB/s ,超过了一般网卡的传输速度,这是磁盘比想象的快的地方 但是磁盘随机写的速度只有大概lOOKB/s,和顺序写的性能相差 6000 倍!)

  2. 虽然是随机读,但是利用操作系统的 pagecache 机制,可以批量地从磁盘读取,作为 cache 存到内存中,加速后续的读取速度。

  3. 为了保证完全的顺序写,需要 ConsumeQueue 这个中间结构 ,因为ConsumeQueue 里只存偏移量信息,所以尺寸是有限的,在实际情况中,大部分的 ConsumeQueue 能够被全部读入内存,所以这个中间结构的操作速度很快,可以认为是内存读取的速度。此外为了保证 CommitLog和ConsumeQueue 的一致性, CommitLog 里存储了 Consume Queues 、Message Key、 Tag 等所有信息,即使 ConsumeQueue 丢失,也可以通过 commitLog 完全恢复出来。

IndexFile

RocketMQ还支持通过MessageID或者MessageKey来查询消息;使用ID查询时,因为ID就是用broker+offset生成的(这里msgId指的是服务端的),所以很容易就找到对应的commitLog文件来读取消息。但是对于用MessageKey来查询消息,RocketMQ则通过构建一个index来提高读取速度。

index 存的是索引文件,这个文件用来加快消息查询的速度。消息消费队列 RocketMQ 专门为消息订阅构建的索引文件 ,提高根据主题与消息检索消息的速度 ,使用Hash索引机制,具体是Hash槽与Hash冲突的链表结构。(这里不做过多解释)

图片23.png

Config

config 文件夹中 存储着Topic和Consumer等相关信息。主题和消费者群组相关的信息就存在在此。

topics.json : topic 配置属性

subscriptionGroup.json :消息消费组配置信息。

delayOffset.json :延时消息队列拉取进度。

consumerOffset.json  :集群消费模式消息消进度。

consumerFilter.json :主题消息过滤信息。

图片24.png

其他

abort :如果存在 abort 文件说明 Broker 非正常闭,该文件默认启动时创建,正常退出之前删除

checkpoint :文件检测点,存储 commitlog 文件最后一次刷盘时间戳、 consumequeue最后一次刷盘时间、 index 索引文件最后一次刷盘时间戳。

过期文件删除

由于 RocketMQ 操作 CommitLog,ConsumeQueue文件是基于内存映射机制并在启动的时候会加载 commitlog,ConsumeQueue 目录下的所有文件,为了避免内存与磁盘的浪费,不可能将消息永久存储在消息服务器上,所以需要引入一种机制来删除己过期的文件。

删除过程分别执行清理消息存储文件( Commitlog )与消息消费 队列文件( ConsumeQueue 文件), 消息消费队列文件与消息存储文件( Commitlog )共用一套过期文件机制。

RocketMQ 清除过期文件的方法是 :如果非当前写文件在一定时间间隔内没有再次被更新,则认为是过期文件,可以被删除, RocketMQ 不会关注这个文件上的消息是否全部被消费。默认每个文件的过期时间为 42小时(不同版本的默认值不同,这里以4.4.0为例) ,通过在 Broker 配置文件中设置 fileReservedTime 来改变过期时间,单位为小时。

触发文件清除操作的是一个定时任务,而且只有定时任务,文件过期删除定时任务的周期由该删除决定,默认每10s执行一次。

过期判断

文件删除主要是由这个配置属性:fileReservedTime:文件保留时间。也就是从最后一次更新时间到现在,如果超过了该时间,则认为是过期文件, 可以删除。

另外还有其他两个配置参数:

deletePhysicFilesInterval:删除物理文件的时间间隔(默认是100MS),在一次定时任务触发时,可能会有多个物理文件超过过期时间可被删除,因此删除一个文件后需要间隔deletePhysicFilesInterval这个时间再删除另外一个文件,由于删除文件是一个非常耗费IO的操作,会引起消息插入消费的延迟(相比于正常情况下),所以不建议直接删除所有过期文件。

destroyMapedFileIntervalForcibly:在删除文件时,如果该文件还被线程引用,此时会阻止此次删除操作,同时将该文件标记不可用并且纪录当前时间戳destroyMapedFileIntervalForcibly这个表示文件在第一次删除拒绝后,文件保存的最大时间,在此时间内一直会被拒绝删除,当超过这个时间时,会将引用每次减少1000,直到引用 小于等于 0为止,即可删除该文件.

删除条件

  1. 指定删除文件的时间点, RocketMQ 通过 deleteWhen 设置一天的固定时间执行一次。删除过期文件操作, 默认为凌晨4点。

  2. 磁盘空间是否充足,如果磁盘空间不充足(DiskSpaceCleanForciblyRatio。磁盘空间强制删除文件水位。默认是85),会触发过期文件删除操作。

另外还有RocketMQ的磁盘配置参数:

  1. 物理使用率大于diskSpaceWarningLevelRatio(默认90%可通过参数设置),则会阻止新消息的插入。

  2. 物理磁盘使用率小于diskMaxUsedSpaceRatio(默认75%) 表示磁盘使用正常。