智慧演算法整合測試平臺V0.1實戰開發

語言: CN / TW / HK

theme: channing-cyan highlight: a11y-light


前言

兜兜轉轉了一圈,想要和其他的粒子群演算法做個對比測試,結果發現,木有程式碼,python沒有也就算了,matlab都找不到,找到了還要錢,好傢伙!雖然有一些python的智慧演算法庫,但是要麼就是整合的太多,沒有專門針對PSO的一些變體進行整合,雖然有一個專門搞PSO的庫,但是,那玩意就集成了一個演算法,核心檔案就一個PSO。

所以,既然沒有,那麼我就自己造個輪子先看看,而且真的要吐槽一波,有些論文不給程式碼也就算了,做對比實驗的時候還不給引數,就很迷,還得自己手動調參。而且發現一個很有意思的事情,在論文作者自己提出的演算法裡面,做實驗效果很好,在別人引用對比的時候,連標準PSO都不要一定幹得過,

目前先搞一個最簡單的版本,不過目前是隻有整合到PSO的,而且目前是針對單目標平臺的,多目標的話有PlatEMO,所以基本上不太需要我再寫一個,只是單目標的話我是沒找到合適的,那些論文的作者也沒給程式碼,網上資源也少,不知道是太簡單了還是怕露餡了,毫無開源精神。

版權

鄭重提示:本文版權歸本人所有,任何人不得抄襲,搬運,使用需徵得本人同意!

2022.7.4

日期:2022.7.4

整合演算法

目前的話,這個玩意是集成了PSO的演算法,其中PSO的演算法分為兩大類,一個是基於引數優化的演算法,另一個是多種群策略,本來我還想搞幾個優化拓撲結構的來的,但是一方面是實現的問題,另一方面是論文沒說明白(中文的)英文的要時間,我沒那麼多時間搞這個破玩意,因為自己的演算法還沒做完,我只是想要一個對比測試的東東。

專案結構

在這裡插入圖片描述

基本粒子群演算法SPSO

在這裡插入圖片描述

資料結構

為了後面統一方便管理,也是專門定義了一個數據類。 在這裡插入圖片描述

```python import random from ALGSet.Config.PSO.SPSO import * class SBird(object):

#這個是從1開始的
ID = 1

Y = None
X = None
V = None

PbestY = None
PBestX = None

GBestX = None
GBestY = None


def __init__(self,ID):
    self.ID = ID
    self.V = [random.random() *(V_max-V_min) + V_min for _ in range(DIM)]
    self.X = [random.random() *(X_up-X_down) + X_down for _ in range(DIM)]

def __str__(self):
    return "ID:"+str(self.ID)+" -Fintess:%.2e:"%(self.Y)+" -X"+str(self.X)+" -PBestFitness:%.2e"%(self.PbestY)+" -PBestX:"+str(self.PBestX)+\
        "\n -GBestFitness:%.2e"%(self.GBestY)+" -GBestX:"+str(self.GBestX)

```

相關配置

配置也是和演算法的名稱對應的,在上面的圖也能夠看出來。

```python

coding=utf-8

相關引數的設定通過配置中心完成

import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) C1=1.458 C2=1.458 W = 0.72 m = 3 DIM = 10 PopulationSize=30

執行1000次(可以理解為訓練1次這個粒子群要跑一千次)

IterationsNumber = 3000 X_down = -10.0 X_up = 10

V_min = -5.0 V_max = 5

Wmax = 0.9 Wmin = 0.4 def LinearW(iterate): #傳入迭代次數

w = Wmax-(iterate*((Wmax-Wmin)/IterationsNumber))
return w

def Dw(iterate): w = Wmax-((iterate2)*((Wmax-Wmin)/(IterationsNumber2))) return w def Nw(iterate): w = Wmin+(Wmax-Wmin)(((IterationsNumber-iterate)m)/(IterationsNumber*m)) return w ```

實現程式碼

```python

coding=utf-8

這個是最基礎的PSO演算法SPSO演算法

import sys import os

from ALGSet.Alg.PSO.Bird.SBird import SBird

sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) from ALGSet.Target.Target import Target from ALGSet.Config.PSO.SPSO import * import random import time class SPso(object):

Population = None
Random = random.random
target = Target()
W = W


def __init__(self):
    #為了方便,我們這邊直接先從1開始
    self.Population = [SBird(ID) for ID in range(1,PopulationSize+1)]

def ComputeV(self,bird):
    #這個方法是用來計算速度滴
    NewV=[]
    for i in range(DIM):
        v = bird.V[i]*self.W + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
        +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
        #這裡注意判斷是否超出了範圍
        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)

    return NewV

def ComputeX(self,bird:SBird):
    NewX = []
    NewV = self.ComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i]+NewV[i]
        if(x>X_up):
            x = X_up
        elif(x<X_down):
            x = X_down
        NewX.append(x)
    return NewX

def InitPopulation(self):
    #初始化種群
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y
    #便利了一遍我們得到了全域性最優的種群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag


def Running(self):
    #這裡開始進入迭代運算
    for iterate in range(1,IterationsNumber+1):
        #這個算的GBestX其實始終是在算下一輪的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")

        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y

            #個體中的最優一定包含了全域性經歷過的最優值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag

if name == 'main':

start = time.time()
sPSO = SPso()
sPSO.InitPopulation()
sPSO.Running()
end = time.time()

print("Y: ",sPSO.Population[0].GBestY)
print("X: ",sPSO.Population[0].GBestX)
print("花費時長:",end-start)

```

目標函式

目標函式的話其實都在Target裡面 目前的話其實還是在做演算法的整合,裡面的很多東西其實壓根沒怎麼架構,不過這個後面改起來很快。現在先把一些演算法塞進去。 在這裡插入圖片描述

```python import math import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) class Target(object): def SquareSum(self,X): res = 0 for x in X:

        res+=x*x

    return res

```

引數優化(單種群)PSO系列演算法

我們在這邊其實是集成了三個

LPSO

這個其實就是線性變化權重。

```python """ LPSO:這個玩意其實還只是對W進行優化了 """ import time

from ALGSet.Alg.PSO.SPSO import SPso from ALGSet.Config.PSO.SPSO import * class LPso(SPso):

def Running(self):
    # 這裡開始進入迭代運算
    for iterate in range(1, IterationsNumber + 1):
        # 這個算的GBestX其實始終是在算下一輪的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        w = LinearW(iterate)
        self.W = w
        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if (bird.Y <= bird.PbestY):
                bird.PBestX = bird.X
                bird.PbestY = bird.Y

            # 個體中的最優一定包含了全域性經歷過的最優值
            if (bird.PbestY <= Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag

if name == 'main': start = time.time() lPSO = LPso() lPSO.InitPopulation() lPSO.Running() end = time.time()

print("Y: ",lPSO.Population[0].GBestY)
print("X: ",lPSO.Population[0].GBestX)
print("花費時長:",end-start)

```

DPSO

這個其實就是把線性權重變成了這個玩意

```python

def Dw(iterate): w = Wmax-((iterate2)*((Wmax-Wmin)/(IterationsNumber2))) return w ```

程式碼其實就是把剛剛的WLinear變成了Dw

NPSO

同理,w函式變成這個了。

python def Nw(iterate): w = Wmin+(Wmax-Wmin)*(((IterationsNumber-iterate)**m)/(IterationsNumber**m)) return w

自適應PSO(VCAPSO)

這個演算法的實現相對複雜一點,其實也不難。 具體資料的話自己感興趣可以去查查,我這裡還沒整理好,就不發了。

引數配置

這個的話也是在Config那個包下面的 ```python

coding=utf-8

相關引數的設定通過配置中心完成

import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) C1=1.458 C2=1.458

K1 = 0.72 K2 = 0.9

DIM = 10 PopulationSize=30

IterationsNumber = 3000 X_down = -10.0 X_up = 10

V_min = -5.0 V_max = 5

Wmax = 0.9 Wmin = 0.4 ```

核心程式碼

```python """ 這個演算法其實也是關於引數進行了優化的 基於雲自適應演算法進行適應的(什麼叫做雲我也不懂,不過公式給我就好了) """ import math import time import random

from ALGSet.Alg.PSO.SPSO import SPso

from ALGSet.Config.PSO.VCAPSO import *

class VCAPso(SPso):

F_avg = 0.
F_avg1=0.
F_avg2=0.
En = 0.
He = 0.

def InitPopulation(self):
    #初始化種群
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        self.F_avg+=bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y
    #便利了一遍我們得到了全域性最優的種群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
    self.F_avg/=PopulationSize
    self.En = (self.F_avg-Flag)/C1
    self.He = self.En/C2
    self.En = random.uniform(self.En,self.He)
    self.F_avg1,self.F_avg2 = self.__GetAvg2(self.Population)

def ComputeV(self,bird):
    #這個方法是用來計算速度滴
    NewV=[]

    if(bird.Y<=self.F_avg1):
        w = K1
    elif(bird.Y>=self.F_avg2):
        w = K2
    else:
        w = Wmax-Wmin*(math.exp(-((bird.Y-self.En)**2)/(2*(self.En**2))))


    for i in range(DIM):
        v = bird.V[i]*w + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
        +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
        #這裡注意判斷是否超出了範圍
        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)

    return NewV

def __GetAvg2(self,Population):
    F_avg1 = 0.
    F_avg2 = 0.
    F_avg1_index = 0
    F_avg2_index = 0
    for bird in Population:
        if(bird.Y<self.F_avg):
            F_avg1_index+=1
            F_avg1+=bird.Y
        elif(bird.Y>self.F_avg):
            F_avg2_index+=1
            F_avg2+=bird.Y

    if (not F_avg1_index == 0):
        F_avg1 /= F_avg1_index
    else:
        F_avg1 = float("inf")
    if (not F_avg2_index == 0):
        F_avg2 /= F_avg2_index
    else:
        F_avg2 = float("inf")

    return F_avg1,F_avg2


def Running(self):
    # 這裡開始進入迭代運算
    for iterate in range(1, IterationsNumber + 1):
        # 這個算的GBestX其實始終是在算下一輪的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        F_avg = 0.
        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y

            F_avg += bird.Y

            if (bird.Y <= bird.PbestY):
                bird.PBestX = bird.X
                bird.PbestY = bird.Y

            # 個體中的最優一定包含了全域性經歷過的最優值
            if (bird.PbestY <= Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY

        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag

        self.F_avg = F_avg
        self.F_avg /= PopulationSize
        self.En = (self.F_avg - Flag) / C1
        self.He = self.En / C2
        self.En = random.uniform(self.En, self.He)
        self.F_avg1, self.F_avg2 = self.__GetAvg2(self.Population)

if name == 'main': start = time.time() vcaPso = VCAPso() vcaPso.InitPopulation() vcaPso.Running() end = time.time()

print("Y: ", vcaPso.Population[0].GBestY)
print("X: ", vcaPso.Population[0].GBestX)
print("花費時長:", end - start)

```

綜合粒子群演算法(CLPSO)

這個演算法是在原來那篇論文裡面提到的,先去復現的時候也是復現了的其實,現在只是單獨提取出來罷了。 值得一提的是,這個玩意其實設計出來主要是應對多峰函式的,收斂也較慢。

```python import math import time

from ALGSet.Target.Target import Target from ALGSet.Config.PSO.CLPSO import * from ALGSet.Alg.PSO.Bird.CLBird import CLBird import random class CLPso(object):

Population = None
Random = random.random
target = Target()
W = 0.
Math = math

def __init__(self):
    #為了方便,我們這邊直接先從1開始
    self.Population = [CLBird(ID) for ID in range(1,PopulationSize+1)]

def __PCi(self,i,ps):
    """
    論文當中的PCi的運算元
    :return:
    """
    pci = 0.05+0.45*((self.Math.exp(10*(i-1)/(ps-1)))/(self.Math.exp(10)-1))
    return pci

def NewComputeV(self, bird):
    """

    :param bird:
    :param params: 傳入的資料格式為:[[w,c1,c2,c3],[],[],[],[]] 這裡一共是5組共設定100個粒子
    :return:
    這裡按照ID的順序來呼叫不同的引數
    """
    NewV = []

    for i in range(DIM):
        v = bird.V[i] * self.W
        if (self.Random() < self.__PCi((i + 1), PopulationSize)):
            pbestfi = bird.Follow.PBestX[i]
        else:
            pbestfi = bird.PBestX[i]
        v = v + C1 * self.Random() * (pbestfi - bird.X[i])
        if (v > V_max):
            v = V_max
        elif (v < V_min):
            v = V_min
        NewV.append(v)

    return NewV

def NewComputeX(self, bird: CLBird):
    NewX = []
    NewV = self.NewComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i] + NewV[i]
        if (x > X_up):
            x = X_up
        elif (x < X_down):
            x = X_down
        NewX.append(x)
    return NewX

def InitPopulation(self):
    #初始化種群,不過是給ENV呼叫的,因為這個裡面有一個CLPSO的思想
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y

    #便利了一遍我們得到了全域性最優的種群
    self.GBestY = Flag
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
        #現在是初始化,所以這個這樣算是沒問題的
        self.GBestYLast = Flag
        #給每一個粒子找到一個追隨者
        self.ChangeBird(bird,self.Population)


def ChangeBird(self,bird,Population):
    #這個主要是實現錦標賽法來對粒子的跟蹤物件進行更新

    while True:
        #被跟蹤的粒子不能和自己一樣,也不能和上一個一樣
        a,b = random.sample(range(PopulationSize),2)
        a = Population[a];b=Population[b]
        follow = a
        if(a.PbestY>b.PbestY):
            follow = b
        if(follow.ID!=bird.ID):
            if(bird.Follow):
                if(bird.Follow.ID !=follow.ID):
                    bird.Follow = follow
                    return
            else:
                bird.Follow = follow
                return

def Running(self):

    for iterate in range(1,IterationsNumber+1):

        #這個算的GBestX其實始終是在算下一輪的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        self.W = LinearW(iterate)
        for bird in self.Population:

            x = self.NewComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y
            elif (bird.Y == bird.PbestY):
                bird.NoChange += 1
                if (bird.NoChange == M_follow):
                    self.ChangeBird(bird, self.Population)
                    bird.NoChange = 0

            #個體中的最優一定包含了全域性經歷過的最優值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag

if name == 'main':

start = time.time()
clPSO = CLPso()
clPSO.InitPopulation()
clPSO.Running()
end = time.time()

print("Y: ",clPSO.Population[0].GBestY)
print("X: ",clPSO.Population[0].GBestX)
print("花費時長:",end-start)

```

多種群演算法

MPSO 演算法

這個演算法就是分三個種群,然後,一個執行LPSO,一個執行SPSO,還一個執行VCAPSO。

這個就是整合三個演算法,然後改了一些速度方程。

python v = bird.V[i] * w + C1 * self.Random() * (bird.PBestX[i] - bird.X[i]) \ + C2*self.Random()*(bird.CBestX[i]-bird.X[i])\ +C3*self.Random()*(self.GBestX[i]-bird.X[i])

HPSO演算法

這個就是混合多種群PSO。也是程式碼很簡單,而且是目前測試效果最好的。

```python import random import time

from ALGSet.Alg.PSO.Bird.Hbird import HBird from ALGSet.Config.PSO.HPSO import * from ALGSet.Target.Target import Target

class HPso():

rand = random.random
miu = miu
target = Target()
def __init__(self):
    self.Population = [HBird(ID) for ID in range(1,PopulationSize+1)]
    self.Divide()

def Divide(self):
    #我們這邊直接通過ID進行分類
    CID = 0
    for bird in self.Population:
        bird.CID=CID
        if(bird.ID % ClusterSize==0):
            if(CID<=ClusterNumber):
                CID+=1

def ComputeV(self,bird):
    #這個方法是用來計算速度滴
    NewV=[]

    for i in range(DIM):


        v1 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
            + C2 * self.rand() * (bird.GBestX[i] - bird.X[i])
        v2 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
            + C2 * self.rand() * (bird.CBestX[i] - bird.X[i])
        v = v1*self.miu+(1-self.miu)*v2

        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)
    return NewV

def ComputeX(self,bird):
    NewX = []
    NewV = self.ComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i]+NewV[i]

        if (x > X_up):
            x = X_up
        elif (x < X_down):
            x = X_down
        NewX.append(x)
    return NewX


def InitPopulation(self):
    #初始化種群
    #這個是記錄全域性最優解的
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")

    #還有一個是記錄Cluster最優解的
    CBest = {}
    CFlag = {}
    for i in range(ClusterNumber):
        CFlag[i]=float("inf")


    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y

        bird.CBestX = bird.X
        bird.CBestY = bird.Y

        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y

        if(bird.Y<=CFlag.get(bird.CID)):
            CBest[bird.CID]=bird.X
            CFlag[bird.CID] = bird.Y

    #便利了一遍我們得到了全域性最優的種群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
        bird.CBestY=CFlag.get(bird.CID)
        bird.CBestX=CBest.get(bird.CID)



def Running(self):
    #這裡開始進入迭代運算
    for iterate in range(1,IterationsNumber+1):
        w = LinearW(iterate)
        #這個算的GBestX其實始終是在算下一輪的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        CBest = {}
        CFlag = {}
        for i in range(ClusterNumber):
            CFlag[i] = float("inf")

        for bird in self.Population:
            #更改為線性權重
            self.W = w
            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)
            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y

            #個體中的最優一定包含了全域性經歷過的最優值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY

            if (bird.Y <= CFlag.get(bird.CID)):
                CBest[bird.CID] = bird.X
                CFlag[bird.CID] = bird.Y

        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag
            bird.CBestY = CFlag.get(bird.CID)
            bird.CBestX = CBest.get(bird.CID)

if name == 'main': start = time.time() hPso = HPso() hPso.InitPopulation() hPso.Running() end = time.time()

print("Y: ", hPso.Population[0].GBestY)
print("X: ", hPso.Population[0].GBestX)
print("花費時長:", end - start)

```

後續工作

搞視覺化測試,後面,不過,這個要後面在做,程式碼後面上傳。 - 我正在參與掘金技術社群創作者簽約計劃招募活動,點選連結報名投稿