智能算法集成测试平台V0.1实战开发

语言: CN / TW / HK

theme: channing-cyan highlight: a11y-light


前言

兜兜转转了一圈,想要和其他的粒子群算法做个对比测试,结果发现,木有代码,python没有也就算了,matlab都找不到,找到了还要钱,好家伙!虽然有一些python的智能算法库,但是要么就是集成的太多,没有专门针对PSO的一些变体进行集成,虽然有一个专门搞PSO的库,但是,那玩意就集成了一个算法,核心文件就一个PSO。

所以,既然没有,那么我就自己造个轮子先看看,而且真的要吐槽一波,有些论文不给代码也就算了,做对比实验的时候还不给参数,就很迷,还得自己手动调参。而且发现一个很有意思的事情,在论文作者自己提出的算法里面,做实验效果很好,在别人引用对比的时候,连标准PSO都不要一定干得过,

目前先搞一个最简单的版本,不过目前是只有集成到PSO的,而且目前是针对单目标平台的,多目标的话有PlatEMO,所以基本上不太需要我再写一个,只是单目标的话我是没找到合适的,那些论文的作者也没给代码,网上资源也少,不知道是太简单了还是怕露馅了,毫无开源精神。

版权

郑重提示:本文版权归本人所有,任何人不得抄袭,搬运,使用需征得本人同意!

2022.7.4

日期:2022.7.4

集成算法

目前的话,这个玩意是集成了PSO的算法,其中PSO的算法分为两大类,一个是基于参数优化的算法,另一个是多种群策略,本来我还想搞几个优化拓扑结构的来的,但是一方面是实现的问题,另一方面是论文没说明白(中文的)英文的要时间,我没那么多时间搞这个破玩意,因为自己的算法还没做完,我只是想要一个对比测试的东东。

项目结构

在这里插入图片描述

基本粒子群算法SPSO

在这里插入图片描述

数据结构

为了后面统一方便管理,也是专门定义了一个数据类。 在这里插入图片描述

```python import random from ALGSet.Config.PSO.SPSO import * class SBird(object):

#这个是从1开始的
ID = 1

Y = None
X = None
V = None

PbestY = None
PBestX = None

GBestX = None
GBestY = None


def __init__(self,ID):
    self.ID = ID
    self.V = [random.random() *(V_max-V_min) + V_min for _ in range(DIM)]
    self.X = [random.random() *(X_up-X_down) + X_down for _ in range(DIM)]

def __str__(self):
    return "ID:"+str(self.ID)+" -Fintess:%.2e:"%(self.Y)+" -X"+str(self.X)+" -PBestFitness:%.2e"%(self.PbestY)+" -PBestX:"+str(self.PBestX)+\
        "\n -GBestFitness:%.2e"%(self.GBestY)+" -GBestX:"+str(self.GBestX)

```

相关配置

配置也是和算法的名称对应的,在上面的图也能够看出来。

```python

coding=utf-8

相关参数的设置通过配置中心完成

import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) C1=1.458 C2=1.458 W = 0.72 m = 3 DIM = 10 PopulationSize=30

运行1000次(可以理解为训练1次这个粒子群要跑一千次)

IterationsNumber = 3000 X_down = -10.0 X_up = 10

V_min = -5.0 V_max = 5

Wmax = 0.9 Wmin = 0.4 def LinearW(iterate): #传入迭代次数

w = Wmax-(iterate*((Wmax-Wmin)/IterationsNumber))
return w

def Dw(iterate): w = Wmax-((iterate2)*((Wmax-Wmin)/(IterationsNumber2))) return w def Nw(iterate): w = Wmin+(Wmax-Wmin)(((IterationsNumber-iterate)m)/(IterationsNumber*m)) return w ```

实现代码

```python

coding=utf-8

这个是最基础的PSO算法SPSO算法

import sys import os

from ALGSet.Alg.PSO.Bird.SBird import SBird

sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) from ALGSet.Target.Target import Target from ALGSet.Config.PSO.SPSO import * import random import time class SPso(object):

Population = None
Random = random.random
target = Target()
W = W


def __init__(self):
    #为了方便,我们这边直接先从1开始
    self.Population = [SBird(ID) for ID in range(1,PopulationSize+1)]

def ComputeV(self,bird):
    #这个方法是用来计算速度滴
    NewV=[]
    for i in range(DIM):
        v = bird.V[i]*self.W + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
        +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
        #这里注意判断是否超出了范围
        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)

    return NewV

def ComputeX(self,bird:SBird):
    NewX = []
    NewV = self.ComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i]+NewV[i]
        if(x>X_up):
            x = X_up
        elif(x<X_down):
            x = X_down
        NewX.append(x)
    return NewX

def InitPopulation(self):
    #初始化种群
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y
    #便利了一遍我们得到了全局最优的种群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag


def Running(self):
    #这里开始进入迭代运算
    for iterate in range(1,IterationsNumber+1):
        #这个算的GBestX其实始终是在算下一轮的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")

        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y

            #个体中的最优一定包含了全局经历过的最优值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag

if name == 'main':

start = time.time()
sPSO = SPso()
sPSO.InitPopulation()
sPSO.Running()
end = time.time()

print("Y: ",sPSO.Population[0].GBestY)
print("X: ",sPSO.Population[0].GBestX)
print("花费时长:",end-start)

```

目标函数

目标函数的话其实都在Target里面 目前的话其实还是在做算法的集成,里面的很多东西其实压根没怎么架构,不过这个后面改起来很快。现在先把一些算法塞进去。 在这里插入图片描述

```python import math import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) class Target(object): def SquareSum(self,X): res = 0 for x in X:

        res+=x*x

    return res

```

参数优化(单种群)PSO系列算法

我们在这边其实是集成了三个

LPSO

这个其实就是线性变化权重。

```python """ LPSO:这个玩意其实还只是对W进行优化了 """ import time

from ALGSet.Alg.PSO.SPSO import SPso from ALGSet.Config.PSO.SPSO import * class LPso(SPso):

def Running(self):
    # 这里开始进入迭代运算
    for iterate in range(1, IterationsNumber + 1):
        # 这个算的GBestX其实始终是在算下一轮的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        w = LinearW(iterate)
        self.W = w
        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if (bird.Y <= bird.PbestY):
                bird.PBestX = bird.X
                bird.PbestY = bird.Y

            # 个体中的最优一定包含了全局经历过的最优值
            if (bird.PbestY <= Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag

if name == 'main': start = time.time() lPSO = LPso() lPSO.InitPopulation() lPSO.Running() end = time.time()

print("Y: ",lPSO.Population[0].GBestY)
print("X: ",lPSO.Population[0].GBestX)
print("花费时长:",end-start)

```

DPSO

这个其实就是把线性权重变成了这个玩意

```python

def Dw(iterate): w = Wmax-((iterate2)*((Wmax-Wmin)/(IterationsNumber2))) return w ```

代码其实就是把刚刚的WLinear变成了Dw

NPSO

同理,w函数变成这个了。

python def Nw(iterate): w = Wmin+(Wmax-Wmin)*(((IterationsNumber-iterate)**m)/(IterationsNumber**m)) return w

自适应PSO(VCAPSO)

这个算法的实现相对复杂一点,其实也不难。 具体资料的话自己感兴趣可以去查查,我这里还没整理好,就不发了。

参数配置

这个的话也是在Config那个包下面的 ```python

coding=utf-8

相关参数的设置通过配置中心完成

import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) C1=1.458 C2=1.458

K1 = 0.72 K2 = 0.9

DIM = 10 PopulationSize=30

IterationsNumber = 3000 X_down = -10.0 X_up = 10

V_min = -5.0 V_max = 5

Wmax = 0.9 Wmin = 0.4 ```

核心代码

```python """ 这个算法其实也是关于参数进行了优化的 基于云自适应算法进行适应的(什么叫做云我也不懂,不过公式给我就好了) """ import math import time import random

from ALGSet.Alg.PSO.SPSO import SPso

from ALGSet.Config.PSO.VCAPSO import *

class VCAPso(SPso):

F_avg = 0.
F_avg1=0.
F_avg2=0.
En = 0.
He = 0.

def InitPopulation(self):
    #初始化种群
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        self.F_avg+=bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y
    #便利了一遍我们得到了全局最优的种群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
    self.F_avg/=PopulationSize
    self.En = (self.F_avg-Flag)/C1
    self.He = self.En/C2
    self.En = random.uniform(self.En,self.He)
    self.F_avg1,self.F_avg2 = self.__GetAvg2(self.Population)

def ComputeV(self,bird):
    #这个方法是用来计算速度滴
    NewV=[]

    if(bird.Y<=self.F_avg1):
        w = K1
    elif(bird.Y>=self.F_avg2):
        w = K2
    else:
        w = Wmax-Wmin*(math.exp(-((bird.Y-self.En)**2)/(2*(self.En**2))))


    for i in range(DIM):
        v = bird.V[i]*w + C1*self.Random()*(bird.PBestX[i]-bird.X[i])\
        +C2*self.Random()*(bird.GBestX[i]-bird.X[i])
        #这里注意判断是否超出了范围
        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)

    return NewV

def __GetAvg2(self,Population):
    F_avg1 = 0.
    F_avg2 = 0.
    F_avg1_index = 0
    F_avg2_index = 0
    for bird in Population:
        if(bird.Y<self.F_avg):
            F_avg1_index+=1
            F_avg1+=bird.Y
        elif(bird.Y>self.F_avg):
            F_avg2_index+=1
            F_avg2+=bird.Y

    if (not F_avg1_index == 0):
        F_avg1 /= F_avg1_index
    else:
        F_avg1 = float("inf")
    if (not F_avg2_index == 0):
        F_avg2 /= F_avg2_index
    else:
        F_avg2 = float("inf")

    return F_avg1,F_avg2


def Running(self):
    # 这里开始进入迭代运算
    for iterate in range(1, IterationsNumber + 1):
        # 这个算的GBestX其实始终是在算下一轮的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        F_avg = 0.
        for bird in self.Population:

            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y

            F_avg += bird.Y

            if (bird.Y <= bird.PbestY):
                bird.PBestX = bird.X
                bird.PbestY = bird.Y

            # 个体中的最优一定包含了全局经历过的最优值
            if (bird.PbestY <= Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY

        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY = Flag

        self.F_avg = F_avg
        self.F_avg /= PopulationSize
        self.En = (self.F_avg - Flag) / C1
        self.He = self.En / C2
        self.En = random.uniform(self.En, self.He)
        self.F_avg1, self.F_avg2 = self.__GetAvg2(self.Population)

if name == 'main': start = time.time() vcaPso = VCAPso() vcaPso.InitPopulation() vcaPso.Running() end = time.time()

print("Y: ", vcaPso.Population[0].GBestY)
print("X: ", vcaPso.Population[0].GBestX)
print("花费时长:", end - start)

```

综合粒子群算法(CLPSO)

这个算法是在原来那篇论文里面提到的,先去复现的时候也是复现了的其实,现在只是单独提取出来罢了。 值得一提的是,这个玩意其实设计出来主要是应对多峰函数的,收敛也较慢。

```python import math import time

from ALGSet.Target.Target import Target from ALGSet.Config.PSO.CLPSO import * from ALGSet.Alg.PSO.Bird.CLBird import CLBird import random class CLPso(object):

Population = None
Random = random.random
target = Target()
W = 0.
Math = math

def __init__(self):
    #为了方便,我们这边直接先从1开始
    self.Population = [CLBird(ID) for ID in range(1,PopulationSize+1)]

def __PCi(self,i,ps):
    """
    论文当中的PCi的算子
    :return:
    """
    pci = 0.05+0.45*((self.Math.exp(10*(i-1)/(ps-1)))/(self.Math.exp(10)-1))
    return pci

def NewComputeV(self, bird):
    """

    :param bird:
    :param params: 传入的数据格式为:[[w,c1,c2,c3],[],[],[],[]] 这里一共是5组共设置100个粒子
    :return:
    这里按照ID的顺序来调用不同的参数
    """
    NewV = []

    for i in range(DIM):
        v = bird.V[i] * self.W
        if (self.Random() < self.__PCi((i + 1), PopulationSize)):
            pbestfi = bird.Follow.PBestX[i]
        else:
            pbestfi = bird.PBestX[i]
        v = v + C1 * self.Random() * (pbestfi - bird.X[i])
        if (v > V_max):
            v = V_max
        elif (v < V_min):
            v = V_min
        NewV.append(v)

    return NewV

def NewComputeX(self, bird: CLBird):
    NewX = []
    NewV = self.NewComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i] + NewV[i]
        if (x > X_up):
            x = X_up
        elif (x < X_down):
            x = X_down
        NewX.append(x)
    return NewX

def InitPopulation(self):
    #初始化种群,不过是给ENV调用的,因为这个里面有一个CLPSO的思想
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")
    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y
        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y

    #便利了一遍我们得到了全局最优的种群
    self.GBestY = Flag
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
        #现在是初始化,所以这个这样算是没问题的
        self.GBestYLast = Flag
        #给每一个粒子找到一个追随者
        self.ChangeBird(bird,self.Population)


def ChangeBird(self,bird,Population):
    #这个主要是实现锦标赛法来对粒子的跟踪对象进行更新

    while True:
        #被跟踪的粒子不能和自己一样,也不能和上一个一样
        a,b = random.sample(range(PopulationSize),2)
        a = Population[a];b=Population[b]
        follow = a
        if(a.PbestY>b.PbestY):
            follow = b
        if(follow.ID!=bird.ID):
            if(bird.Follow):
                if(bird.Follow.ID !=follow.ID):
                    bird.Follow = follow
                    return
            else:
                bird.Follow = follow
                return

def Running(self):

    for iterate in range(1,IterationsNumber+1):

        #这个算的GBestX其实始终是在算下一轮的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        self.W = LinearW(iterate)
        for bird in self.Population:

            x = self.NewComputeX(bird)
            y = self.target.SquareSum(x)

            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y
            elif (bird.Y == bird.PbestY):
                bird.NoChange += 1
                if (bird.NoChange == M_follow):
                    self.ChangeBird(bird, self.Population)
                    bird.NoChange = 0

            #个体中的最优一定包含了全局经历过的最优值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY
        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag

if name == 'main':

start = time.time()
clPSO = CLPso()
clPSO.InitPopulation()
clPSO.Running()
end = time.time()

print("Y: ",clPSO.Population[0].GBestY)
print("X: ",clPSO.Population[0].GBestX)
print("花费时长:",end-start)

```

多种群算法

MPSO 算法

这个算法就是分三个种群,然后,一个执行LPSO,一个执行SPSO,还一个执行VCAPSO。

这个就是集成三个算法,然后改了一些速度方程。

python v = bird.V[i] * w + C1 * self.Random() * (bird.PBestX[i] - bird.X[i]) \ + C2*self.Random()*(bird.CBestX[i]-bird.X[i])\ +C3*self.Random()*(self.GBestX[i]-bird.X[i])

HPSO算法

这个就是混合多种群PSO。也是代码很简单,而且是目前测试效果最好的。

```python import random import time

from ALGSet.Alg.PSO.Bird.Hbird import HBird from ALGSet.Config.PSO.HPSO import * from ALGSet.Target.Target import Target

class HPso():

rand = random.random
miu = miu
target = Target()
def __init__(self):
    self.Population = [HBird(ID) for ID in range(1,PopulationSize+1)]
    self.Divide()

def Divide(self):
    #我们这边直接通过ID进行分类
    CID = 0
    for bird in self.Population:
        bird.CID=CID
        if(bird.ID % ClusterSize==0):
            if(CID<=ClusterNumber):
                CID+=1

def ComputeV(self,bird):
    #这个方法是用来计算速度滴
    NewV=[]

    for i in range(DIM):


        v1 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
            + C2 * self.rand() * (bird.GBestX[i] - bird.X[i])
        v2 = bird.V[i] * self.W + C1 * self.rand() * (bird.PBestX[i] - bird.X[i]) \
            + C2 * self.rand() * (bird.CBestX[i] - bird.X[i])
        v = v1*self.miu+(1-self.miu)*v2

        if(v>V_max):
            v = V_max
        elif(v<V_min):
            v = V_min
        NewV.append(v)
    return NewV

def ComputeX(self,bird):
    NewX = []
    NewV = self.ComputeV(bird)
    bird.V = NewV
    for i in range(DIM):
        x = bird.X[i]+NewV[i]

        if (x > X_up):
            x = X_up
        elif (x < X_down):
            x = X_down
        NewX.append(x)
    return NewX


def InitPopulation(self):
    #初始化种群
    #这个是记录全局最优解的
    GBestX = [0. for _ in range(DIM)]
    Flag = float("inf")

    #还有一个是记录Cluster最优解的
    CBest = {}
    CFlag = {}
    for i in range(ClusterNumber):
        CFlag[i]=float("inf")


    for bird in self.Population:
        bird.PBestX = bird.X
        bird.Y = self.target.SquareSum(bird.X)
        bird.PbestY = bird.Y

        bird.CBestX = bird.X
        bird.CBestY = bird.Y

        if(bird.Y<=Flag):
            GBestX = bird.X
            Flag = bird.Y

        if(bird.Y<=CFlag.get(bird.CID)):
            CBest[bird.CID]=bird.X
            CFlag[bird.CID] = bird.Y

    #便利了一遍我们得到了全局最优的种群
    for bird in self.Population:
        bird.GBestX = GBestX
        bird.GBestY = Flag
        bird.CBestY=CFlag.get(bird.CID)
        bird.CBestX=CBest.get(bird.CID)



def Running(self):
    #这里开始进入迭代运算
    for iterate in range(1,IterationsNumber+1):
        w = LinearW(iterate)
        #这个算的GBestX其实始终是在算下一轮的最好的玩意
        GBestX = [0. for _ in range(DIM)]
        Flag = float("inf")
        CBest = {}
        CFlag = {}
        for i in range(ClusterNumber):
            CFlag[i] = float("inf")

        for bird in self.Population:
            #更改为线性权重
            self.W = w
            x = self.ComputeX(bird)
            y = self.target.SquareSum(x)
            bird.X = x
            bird.Y = y
            if(bird.Y<=bird.PbestY):
                bird.PBestX=bird.X
                bird.PbestY = bird.Y

            #个体中的最优一定包含了全局经历过的最优值
            if(bird.PbestY<=Flag):
                GBestX = bird.PBestX
                Flag = bird.PbestY

            if (bird.Y <= CFlag.get(bird.CID)):
                CBest[bird.CID] = bird.X
                CFlag[bird.CID] = bird.Y

        for bird in self.Population:
            bird.GBestX = GBestX
            bird.GBestY=Flag
            bird.CBestY = CFlag.get(bird.CID)
            bird.CBestX = CBest.get(bird.CID)

if name == 'main': start = time.time() hPso = HPso() hPso.InitPopulation() hPso.Running() end = time.time()

print("Y: ", hPso.Population[0].GBestY)
print("X: ", hPso.Population[0].GBestX)
print("花费时长:", end - start)

```

后续工作

搞可视化测试,后面,不过,这个要后面在做,代码后面上传。 - 我正在参与掘金技术社区创作者签约计划招募活动,点击链接报名投稿