單執行緒起家的Redis,是怎麼向多執行緒過渡的?

語言: CN / TW / HK

 點選上方“分散式實驗室” 關注公眾號

回覆 “1” 抽取 技術書

Redis作為一個基於記憶體的快取系統, 一直以高效能著稱 ,因沒有上下文切換以及無鎖操作,即使在單執行緒處理情況下,讀速度仍可達到11萬次/s,寫速度達到8.1萬次/s。但是,單執行緒的設計也給Redis帶來一些問題:

  • 只能使用CPU一個核;

  • 如果刪除的鍵過大(比如Set型別中有上百萬個物件),會導致服務端阻塞好幾秒;

  • QPS難再提高。

針對上面問題,Redis在4.0版本以及6.0版本分別引入了Lazy Free以及多執行緒IO,逐步向多執行緒過渡,下面將會做詳細介紹。

  1  

單執行緒原理

都說Redis是單執行緒的,那麼單執行緒是如何體現的?如何支援客戶端併發請求的?為了搞清這些問題,首先來了解下Redis是如何工作的。

Redis伺服器是一個事件驅動程式,伺服器需要處理以下兩類事件:

  • 檔案事件 :Redis伺服器通過套接字與客戶端(或者其他Redis伺服器)進行連線,而檔案事件就是伺服器對套接字操作的抽象;伺服器與客戶端的通訊會產生相應的檔案事件,而伺服器則通過監聽並處理這些事件來完成一系列網路通訊操作,比如連線accept,read,write,close等;

  • 時間事件 :Redis伺服器中的一些操作(比如serverCron函式)需要在給定的時間點執行,而時間事件就是伺服器對這類定時操作的抽象,比如過期鍵清理,服務狀態統計等。

如上圖,Redis將檔案事件和時間事件進行抽象,時間輪訓器會監聽I/O事件表,一旦有檔案事件就緒,Redis就會優先處理檔案事件,接著處理時間事件。在上述所有事件處理上,Redis都是以單執行緒形式處理,所以說Redis是單執行緒的。

此外,如下圖,Redis基於Reactor模式開發了自己的I/O事件處理器,也就是檔案事件處理器,Redis在I/O事件處理上,採用了I/O多路複用技術,同時監聽多個套接字,併為套接字關聯不同的事件處理函式,通過一個執行緒實現了多客戶端併發處理。

正因為這樣的設計,在資料處理上避免了加鎖操作,既使得實現上足夠簡潔,也保證了其高效能。當然,Redis單執行緒只是指其在事件處理上,實際上,Redis也並不是單執行緒的,比如生成RDB檔案,就會fork一個子程序來實現,當然,這不是本文要討論的內容。

  2  

Lazy Free機制

如上所知,Redis在處理客戶端命令時是以單執行緒形式執行,而且處理速度很快,期間不會響應其他客戶端請求,但若客戶端向Redis傳送一條耗時較長的命令,比如刪除一個含有上百萬物件的Set鍵,或者執行FLUSHDB,FLUSHALL操作,Redis伺服器需要回收大量的記憶體空間,導致伺服器卡住好幾秒,對負載較高的快取系統而言將會是個災難。為了解決這個問題, 在Redis 4.0版本引入了Lazy Free ,將慢操作非同步化,這也是在事件處理上向多執行緒邁進了一步。

如作者在其部落格中所述, 要解決慢操作,可以採用漸進式處理 ,即增加一個時間事件,比如在刪除一個具有上百萬個物件的Set鍵時,每次只刪除大鍵中的一部分資料,最終實現大鍵的刪除。但是,該方案可能會導致回收速度趕不上建立速度,最終導致記憶體耗盡。

因此,Redis最終實現上是將大鍵的刪除操作非同步化,採用非阻塞刪除(對應命令UNLINK),大鍵的空間回收交由單獨執行緒實現,主執行緒只做關係解除,可以快速返回,繼續處理其他事件,避免伺服器長時間阻塞。

以刪除(DEL命令)為例,看看Redis是如何實現的,下面就是刪除函式的入口,其中,lazyfree_lazy_user_del是是否修改DEL命令的預設行為,一旦開啟,執行DEL時將會以UNLINK形式執行。

void delCommand(client *c) {
    delGenericCommand(c,server.lazyfree_lazy_user_del);
}

/* This command implements DEL and LAZYDEL. */
void delGenericCommand(client *c, int lazy) {
    int numdel = 0, j;

    for (j = 1; j < c->argc; j++) {
        expireIfNeeded(c->db,c->argv[j]);
        // 根據配置確定DEL在執行時是否以lazy形式執行
        int deleted  = lazy ? dbAsyncDelete(c->db,c->argv[j]) :
                              dbSyncDelete(c->db,c->argv[j]);
        if (deleted) {
            signalModifiedKey(c,c->db,c->argv[j]);
            notifyKeyspaceEvent(NOTIFY_GENERIC,
                "del",c->argv[j],c->db->id);
            server.dirty++;
            numdel++;
        }
    }
    addReplyLongLong(c,numdel);
}

同步刪除很簡單,只要把key和value刪除,如果有內層引用,則進行遞迴刪除,這裡不做介紹。下面看下非同步刪除,Redis在回收物件時,會先計算回收收益,只有回收收益在超過一定值時,採用封裝成Job加入到非同步處理佇列中,否則直接同步回收,這樣效率更高。回收收益計算也很簡單,比如String型別,回收收益值就是1,而Set型別,回收收益就是集合中元素個數。

/* Delete a key, value, and associated expiration entry if any, from the DB.
 * If there are enough allocations to free the value object may be put into
 * a lazy free list instead of being freed synchronously. The lazy free list
 * will be reclaimed in a different bio.c thread. */
#define LAZYFREE_THRESHOLD 64
int dbAsyncDelete(redisDb *db, robj *key) {
    /* Deleting an entry from the expires dict will not free the sds of
     * the key, because it is shared with the main dictionary. */
    if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);

    /* If the value is composed of a few allocations, to free in a lazy way
     * is actually just slower... So under a certain limit we just free
     * the object synchronously. */
    dictEntry *de = dictUnlink(db->dict,key->ptr);
    if (de) {
        robj *val = dictGetVal(de);
        // 計算value的回收收益
        size_t free_effort = lazyfreeGetFreeEffort(val);

        /* If releasing the object is too much work, do it in the background
         * by adding the object to the lazy free list.
         * Note that if the object is shared, to reclaim it now it is not
         * possible. This rarely happens, however sometimes the implementation
         * of parts of the Redis core may call incrRefCount() to protect
         * objects, and then call dbDelete(). In this case we'll fall          * through and reach the dictFreeUnlinkedEntry() call, that will be          * equivalent to just calling decrRefCount(). */         // 只有回收收益超過一定值,才會執行非同步刪除,否則還是會退化到同步刪除         if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {             atomicIncr(lazyfree_objects,1);             bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);             dictSetVal(db->dict,de,NULL);         }     }     /* Release the key-val pair, or just the key if we set the val      * field to NULL in order to lazy free it later. */     if (de) {         dictFreeUnlinkedEntry(db->dict,de);         if (server.cluster_enabled) slotToKeyDel(key->ptr);         return 1;     } else {         return 0;     } }

通過引入a threaded lazy free,Redis實現了對於Slow Operation的Lazy操作,避免了在大鍵刪除,FLUSHALL,FLUSHDB時導致伺服器阻塞。當然,在實現該功能時,不僅引入了lazy free執行緒,也對Redis聚合型別在儲存結構上進行改進。因為Redis內部使用了很多共享物件,比如客戶端輸出快取。

當然,Redis並未使用加鎖來避免執行緒衝突,鎖競爭會導致效能下降,而是去掉了共享物件,直接採用資料拷貝,如下,在3.x和6.x中ZSet節點value的不同實現。

// 3.2.5版本ZSet節點實現,value定義robj *obj
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
    robj *obj;
    double score;
    struct zskiplistNode *backward;
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned int span;
    } level[];
} zskiplistNode;

// 6.0.10版本ZSet節點實現,value定義為sds ele
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
    sds ele;
    double score;
    struct zskiplistNode *backward;
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned long span;
    } level[];
} zskiplistNode;

去掉共享物件,不但實現了lazy free功能,也為Redis向多執行緒跨進帶來了可能,正如作者所述:

Now that values of aggregated data types are fully unshared, and client output buffers don’t contain shared objects as well, there is a lot to exploit. For example it is finally possible to implement threaded I/O in Redis, so that different clients are served by different threads. This means that we’ll have a global lock only when accessing the database, but the clients read/write syscalls and even the parsing of the command the client is sending, can happen in different threads.

  3  

多執行緒I/O及其侷限性

Redis在4.0版本引入了Lazy Free,自此Redis有了一個Lazy Free執行緒專門用於大鍵的回收,同時,也去掉了聚合型別的共享物件,這為多執行緒帶來可能,Redis也不負眾望,在6.0版本實現了多執行緒I/O。

實現原理

正如官方以前的回覆,Redis的效能瓶頸並不在CPU上,而是在記憶體和網路上。因此6.0釋出的多執行緒並未將事件處理改成多執行緒,而是在I/O上,此外,如果把事件處理改成多執行緒,不但會導致鎖競爭,而且會有頻繁的上下文切換,即使用分段鎖來減少競爭,對Redis核心也會有較大改動,效能也不一定有明顯提升。

如上圖紅色部分,就是Redis實現的多執行緒部分,利用多核來分擔I/O讀寫負荷。在事件處理執行緒每次獲取到可讀事件時,會將所有就緒的讀事件分配給I/O執行緒,並進行等待,在所有I/O執行緒完成讀操作後,事件處理執行緒開始執行任務處理,在處理結束後,同樣將寫事件分配給I/O執行緒,等待所有I/O執行緒完成寫操作。

以讀事件處理為例,看下事件處理執行緒任務分配流程:

int handleClientsWithPendingReadsUsingThreads(void) {
    ...

    /* Distribute the clients across N different lists. */
    listIter li;
    listNode *ln;
    listRewind(server.clients_pending_read,&li);
    int item_id = 0;
    // 將等待處理的客戶端分配給I/O執行緒
    while((ln = listNext(&li))) {
        client *c = listNodeValue(ln);
        int target_id = item_id % server.io_threads_num;
        listAddNodeTail(io_threads_list[target_id],c);
        item_id++;
    }
    
    ...

    /* Wait for all the other threads to end their work. */
    // 輪訓等待所有I/O執行緒處理完
    while(1) {
        unsigned long pending = 0;
        for (int j = 1; j < server.io_threads_num; j++)
            pending += io_threads_pending[j];
        if (pending == 0) break;
    }

    ...

    return processed;
}

I/O執行緒處理流程:

void *IOThreadMain(void *myid) {
    ...

    while(1) {
        ...

        // I/O執行緒執行讀寫操作
        while((ln = listNext(&li))) {
            client *c = listNodeValue(ln);
            // io_threads_op判斷是讀還是寫事件
            if (io_threads_op == IO_THREADS_OP_WRITE) {
                writeToClient(c,0);
            } else if (io_threads_op == IO_THREADS_OP_READ) {
                readQueryFromClient(c->conn);
            } else {
                serverPanic("io_threads_op value is unknown");
            }
        }
        listEmpty(io_threads_list[id]);
        io_threads_pending[id] = 0;

        if (tio_debug) printf("[%ld] Done\n", id);
    }
}

侷限性

從上面實現上看,6.0版本的多執行緒並非徹底的多執行緒,I/O執行緒只能同時執行讀或者同時執行寫操作,期間事件處理執行緒一直處於等待狀態,並非流水線模型,有很多輪訓等待開銷。

Tair多執行緒實現原理

相較於6.0版本的多執行緒,Tair的多執行緒實現更加優雅。如下圖,Tair的Main Thread負責客戶端連線建立等,IO Thread負責請求讀取、響應傳送、命令解析等,Worker Thread執行緒專門用於事件處理。

IO Thread讀取使用者的請求並進行解析,之後將解析結果以命令的形式放在佇列中傳送給Worker Thread處理。Worker Thread將命令處理完成後生成響應,通過另一條佇列傳送給IO Thread。為了提高執行緒的並行度,IO Thread和Worker Thread之間採用 無鎖佇列管道 進行資料交換,整體效能會更好。

  4  

小結

Redis 4.0引入Lazy Free執行緒,解決了諸如大鍵刪除導致伺服器阻塞問題,在6.0版本引入了I/O Thread執行緒,正式實現了多執行緒,但相較於Tair,並不太優雅,而且效能提升上並不多,壓測看,多執行緒版本效能是單執行緒版本的2倍,Tair多執行緒版本則是單執行緒版本的3倍。在作者看來,Redis多執行緒無非兩種思路,I/O threading和Slow commands threading,正如作者在其部落格中所說:

I/O threading is not going to happen in Redis AFAIK, because after much consideration I think it’s a lot of complexity without a good reason. Many Redis setups are network or memory bound actually. Additionally I really believe in a share-nothing setup, so the way I want to scale Redis is by improving the support for multiple Redis instances to be executed in the same host, especially via Redis Cluster.

What instead I really want a lot is slow operations threading, and with the Redis modules system we already are in the right direction. However in the future (not sure if in Redis 6 or 7) we’ll get key-level locking in the module system so that threads can completely acquire control of a key to process slow operations. Now modules can implement commands and can create a reply for the client in a completely separated way, but still to access the shared data set a global lock is needed: this will go away.

Redis作者更傾向於採用叢集方式來解決I/O threading,尤其是在6.0版本釋出的原生Redis Cluster Proxy背景下,使得叢集更加易用。此外,作者更傾向於slow operations threading(比如4.0版本釋出的Lazy Free)來解決多執行緒問題。後續版本,是否會將IO Thread實現的更加完善,採用Module實現對慢操作的優化,著實值得期待。

推薦閱讀:《Redis 進階筆記》

點選下方卡片關注 分散式實驗室 ,和 我們 一起

關注分散式最佳實踐

  點選上方卡片關注分散式實驗室,掌握前沿分散式技術

長按識別下方二維碼,瞭解培訓主題。