基於pytorch搭建ResNet神經網絡用於花類識別

語言: CN / TW / HK

持續創作,加速成長!這是我參與「掘金日新計劃 · 6 月更文挑戰」的第11天,點擊查看活動詳情

 

🍊作者簡介:禿頭小蘇,致力於用最通俗的語言描述問題

🍊往期回顧:基於pytorch搭建VGGNet神經網絡用於花類識別    基於pytorch搭建AlexNet神經網絡用於花類識別

🍊近期目標:擁有5000粉絲

🍊支持小蘇:點贊👍🏼、收藏⭐、留言📩

基於pytorch搭建ResNet神經網絡用於花類識別

寫在前面

  這一系列已經寫了好幾篇了,這篇結束後可能就會停更一系列了,因為一方面,看懂了已經更新的這些我認為其他的網絡大概就是照葫蘆畫瓢,自己多多少少是能看明白個大概的。【當然這是要在你對這部分網絡結構的理論有充分的瞭解之後】另一方面,我覺得這部分真的得你自己切切實實的鑽研,自己一步步的調試,看別人的文章、甚至是視頻,你可能會得到短暫的滿足,但是許多細節你是體驗不到的。所以這裏給出基於pytorch搭建ResNet神經網絡用於花類識別的完整代碼,希望大家下去後仔細閲讀🌹🌹🌹

  至於這一系列再次更新的話不出意外會講講一些輕量級網絡像MobileNetshuffleNet等,當然了這部分都已經做過理論部分的概述了🍋🍋🍋

還是迴歸到本文上來,首先你需要具備以下知識:

  • ResNet的理論
  • pytorch搭建網絡基礎

當然,這些我在前文都已經介紹過,大家抱着缺啥補啥的態度去看看唄🌾🌾🌾

ResNet網絡模型搭建✨✨✨

  自己寫文章的宗旨是致力於用最通俗的語言描述問題嘛🎯🎯🎯但是對於一些關乎於代碼的文章,有的時候單純的文字確實很難將問題表述清楚,因此我建議你先觀看此視頻,對ResNet網絡模型搭建的整理流程有了一個大致的瞭解後再來閲讀此文,然後再以這篇文章為輔進行學習,這樣我覺得是高效的學習方式🍀🍀🍀當然這樣還是不夠的,你一定要自己去獨立的閲讀代碼,一步步的調試運行,這一點我想我再強調也不為過】

  ResNeta網絡是有大量重複的結構堆疊而成的,它的網絡層數主要有18層、34層、50層、101層和152層。對於18層和34層的網絡它的基礎模塊為basic block,而對於50層、101層和152層的網絡其基礎模塊為bottleneck block。我們可以分別來定義這兩個基礎模塊,如下:

```python

定義BasicBlock

class BasicBlock(nn.Module): expansion = 1

def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
    super(BasicBlock, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                           kernel_size=3, stride=stride, padding=1, bias=False)       # 特徵圖尺寸不變
    self.bn1 = nn.BatchNorm2d(out_channel)              # BN層建議放在卷積和激活層之間
    self.relu = nn.ReLU()
    self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                           kernel_size=3, stride=1, padding=1, bias=False)
    self.bn2 = nn.BatchNorm2d(out_channel)
    self.downsample = downsample

def forward(self, x):
    identity = x
    if self.downsample is not None:
        identity = self.downsample(x)

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)

    out += identity
    out = self.relu(out)

    return out

```

```python

定義Bottleneck

class Bottleneck(nn.Module): """ 注意:原論文中,在虛線殘差結構的主分支上,第一個1x1卷積層的步距是2,第二個3x3卷積層步距是1。 但在pytorch官方實現過程中是第一個1x1卷積層的步距是1,第二個3x3卷積層步距是2, 這麼做的好處是能夠在top1上提升大概0.5%的準確率。 可參考Resnet v1.5 http://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch """ expansion = 4

def __init__(self, in_channel, out_channel, stride=1, downsample=None,
             groups=1, width_per_group=64):
    super(Bottleneck, self).__init__()

    width = int(out_channel * (width_per_group / 64.)) * groups

    self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                           kernel_size=1, stride=1, bias=False)  # squeeze channels
    self.bn1 = nn.BatchNorm2d(width)
    # -----------------------------------------
    self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                           kernel_size=3, stride=stride, bias=False, padding=1)
    self.bn2 = nn.BatchNorm2d(width)
    # -----------------------------------------
    self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
                           kernel_size=1, stride=1, bias=False)  # unsqueeze channels
    self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
    self.relu = nn.ReLU(inplace=True)
    self.downsample = downsample

def forward(self, x):
    identity = x
    if self.downsample is not None:
        identity = self.downsample(x)

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)
    out = self.relu(out)

    out = self.conv3(out)
    out = self.bn3(out)

    out += identity
    out = self.relu(out)

    return out

```

接着我們就可以來定義我們的ResNet網絡了:

```python class ResNet(nn.Module):

def __init__(self,
             block,
             blocks_num,
             num_classes=1000,
             include_top=True,
             groups=1,
             width_per_group=64):
    super(ResNet, self).__init__()
    self.include_top = include_top
    self.in_channel = 64

    self.groups = groups
    self.width_per_group = width_per_group

    self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                           padding=3, bias=False)
    self.bn1 = nn.BatchNorm2d(self.in_channel)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, blocks_num[0])
    self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
    self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
    self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
    if self.include_top:
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

def forward(self, x):
    x = self.conv1(x)
    x = self.bn1(x)
    x = self.relu(x)
    x = self.maxpool(x)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)

    if self.include_top:
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

    return x

```

我們可以看出再ResNet 的定義中有這樣的函數:

image-20220422204905127

  該函數表示對ResNet的每個基礎模塊一個整合,即layer1對應conv2_x、layer2對應conv3_x、layer3對應conv4_x、layer4對應conv5_x🍚🍚🍚

<img src="http://gitee.com/wsj-create/cloudimage/raw/master/img/image-20220422210226368.png" alt="image-20220422210226368" style="zoom:80%;" />

_make_layer函數的定義如下:

```python def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion))

layers = []
layers.append(block(self.in_channel,
                    channel,
                    downsample=downsample,
                    stride=stride,
                    groups=self.groups,
                    width_per_group=self.width_per_group))
self.in_channel = channel * block.expansion

for _ in range(1, block_num):
    layers.append(block(self.in_channel,
                        channel,
                        groups=self.groups,
                        width_per_group=self.width_per_group))

return nn.Sequential(*layers)

def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

if self.include_top:
    x = self.avgpool(x)
    x = torch.flatten(x, 1)
    x = self.fc(x)

return x

```

最後我們來看看如何定義一個具體的網絡:

```python def resnet34(num_classes=1000, include_top=True): # http://download.pytorch.org/models/resnet34-333f7ec4.pth return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)

def resnet50(num_classes=1000, include_top=True): # http://download.pytorch.org/models/resnet50-19c8e357.pth return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)

def resnet101(num_classes=1000, include_top=True): # http://download.pytorch.org/models/resnet101-5d3b4d8f.pth return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top) ```

訓練結構展示

ResNet34訓練結果:

ResNet50訓練結果:

ResNet101訓練結果:

遷移學習使用ResNet34預加載模型:

image-20220423102504762

下面給出各種模型生成的權重文件,如下:

image-20220423102746925

小結

  這一部分我感到有一些的奇怪,即上文用resnet訓時,resnet101和resnet50的效果要比resnet34效果差,但是理論部分不是説resnet層數深效果越好嘛,這是什麼原因呢?希望知道的可以告知。🌿🌿🌿


  問了一些大佬,對於上述問題他們的解答是:這個和自己任務也有關係,簡單的任務可能用小網絡效果更好。

參考視頻:http://www.bilibili.com/video/BV14E411H7Uw/?spm_id_from=333.788

    如若文章對你有所幫助,那就🛴🛴🛴 咻咻咻咻~~duang\~~點個讚唄