CEC2017基礎函式說明Python版本
theme: channing-cyan highlight: agate
前言
撐得慌,拿來練練手。部分函式沒有實現,因為比較麻煩。我這邊玩的話,也是直接拿這個玩,因為實際上他們玩的時候因該是加了偏置轉換的,像cec2003好像都是沒有偏置的。反正都能夠說明問題,管你那麼多。
Bent Cigar Function
python
def F1(self,X):
Dim = len(X)
res = X[0]*X[0]
temp = 0.
for i in range(2,Dim+1):
temp+=X[i-1]*X[i-1]
res+=self.pow(10,6)*temp
return res
Sum of Different Power Function
python
def F2(self,X):
res = 0.
Dim = len(X)
for i in range(1,Dim+1):
res+=self.pow(abs(X[i-1]),(i+1))
return res
Zakharov Function
python
def F3(self,X):
part1 = 0.
part2 = 0.
for x in X:
part1+=x*x
part2+=0.5*x
res = part1+self.pow(part2,2)+self.pow(part2,4)
return res
Rosenbrock’s Function
python
def F4(self,X):
Dim = len(X)
res = 0.
for i in range(1,Dim):
res+=100*self.pow((self.pow(X[i-1],2)-X[i]),2)+(X[i-1]-1)+self.pow((X[i]-1),2)
return res
Rastrigin’s Function
python
def F5(self,X):
res = 0.
for x in X:
res+=(x*x-10*self.cos(2*self.pi*x)+10)
return res
Expanded Schaffer’s F6 Function
```python def __g(self,x1,x2): res = 0.5+(self.pow(self.sin(self.sqrt(x1x1+x2x2)),2)/self.pow((1+0.001(x1x1+x2*x2)),2)) return res
def F6(self,X):
Dim = len(X)
res = 0.
for i in range(Dim-1):
res+=self.__g(X[i],X[i+1])
res+=self.__g(X[Dim-1],X[0])
return res
```
Lunacek bi-Rastrigin Function
Non-continuous Rotated Rastrigin’s Function
```python
def F8(self,X):
res = 0.
for x in X:
if(abs(x)<0.5):
y = x
else:
y = (round(2*x)/2)
res+=y*y - 10*(self.cos(2*self.pi*y)) + 10
return res
```
Levy Function
python
def F9(self,X):
Dim = len(X)
res = self.pow(self.sin(self.pi*(1+(X[0]-1/4))),2)
part2 = 0.
for i in range(1,Dim):
w = (1+(X[i-1]-1/4))
part2+=self.pow(w,2)*(1+10*self.pow(self.pi*w+1,2))
w = (1 + (X[Dim - 1] - 1 / 4))
res+=part2+(self.pow(w-1,2)*(1+self.pow(self.sin(2*self.pi*w),2)))
return res
Modified Schwefel’s Function
High Conditioned Elliptic Function
python
def F11(self,X):
Dim = len(X)
res = 0.
for i in range(1,Dim+1):
res+=self.pow(1000000,(i-1/Dim-1))*X[i-1]*X[i-1]
return res
Discus Function
python
def F12(self,X):
res = 1000000*X[0]*X[0]
Dim = len(X)
for i in range(1,Dim):
res+=X[i]*X[i]
return res
Ackley’s Function
python
def F13(self,X):
Dim = len(X)
part2 = 0.
part3 = 0.
for x in X:
part2+=x*x
part3+=self.cos(self.pi*2*x)
res = -20*self.exp(-0.2*self.sqrt((1/Dim)*part2))-self.exp((1/Dim)*part3)+20+self.e
return res
Weierstrass Function
```python
def F14(self,X):
kmax = 20;a=0.5;b=3
Dim = len(X)
part1 = 0.
for x in X:
temp = 0.
for i in range(kmax+1):
temp+=self.pow(a,i)*self.cos(2*self.pi*self.pow(b,i)*(x+0.5))
part1+=temp
part2 = Dim
temp=0.
for i in range(kmax+1):
temp += self.pow(a, i) * self.cos(2 * self.pi * self.pow(b, i) * 0.5)
part2*=temp
res = part1-part2
return res
```
Griewank’s Function
```python def F15(self,X):
part1 = 0.
part2 = 1
Dim = len(X)
for i in range(1,Dim+1):
part1+=X[i-1]*X[i-1]/4000
part2*=self.cos(X[i-1]/self.sqrt(i))
res = part1-part2 +1
return res
```
Katsuura Function
python
def F16(self,X):
Dim = len(X)
part1 = 1
for i in range(1,Dim+1):
temp=0.
for j in range(1,33):
temp+=abs(self.pow(2,j)*X[i-1]-round(self.pow(2,j)*X[i-1]))/2**j
temp = self.pow(1+i*temp,(10/Dim**1.2))
part1*=temp
res = (10/Dim**2)*part1-(10/Dim**2)
return res
HappyCat Function
```python def F17(self,X): Dim = len(X) part1 = 0. part2 = 0.
for x in X:
part1+=x*x
part2+=x
res = self.pow(abs(part1-Dim),0.25)+(0.5*part1+part2)/Dim + 0.5
return res
```
HGBat Function
```python
def F18(self,X):
Dim = len(X)
part1 = 0.
part2 = 0.
for x in X:
part1+=x*x
part2+=x
res = self.pow(abs(self.pow(part1,2)-self.pow(part2,2)),0.5)+(0.5*part1+part2)/Dim + 0.5
return res
```
Schaffer's F7 Function
```python def F20(self,X): Dim = len(X) part1 = 0. for i in range(0,Dim-1): s = self.sqrt(X[i]2+X[i+1]2) part1+=self.sqrt(s)(self.sin(50.0s*0.2)+1) res = self.pow((1/(Dim-1))part1,2) return res
```
完整程式碼
```python import math class Functions(object): """ 先例項出物件來,減少new物件的時間,python優化 """ pow = math.pow cos = math.cos sin = math.sin pi = math.pi exp = math.exp sqrt = math.sqrt e = math.e def F1(self,X): Dim = len(X) res = X[0]X[0] temp = 0. for i in range(2,Dim+1): temp+=X[i-1]X[i-1] res+=self.pow(10,6)temp return res def F2(self,X): res = 0. Dim = len(X) for i in range(1,Dim+1): res+=self.pow(abs(X[i-1]),(i+1)) return res def F3(self,X): part1 = 0. part2 = 0. for x in X: part1+=xx part2+=0.5x res = part1+self.pow(part2,2)+self.pow(part2,4) return res def F4(self,X): Dim = len(X) res = 0. for i in range(1,Dim): res+=100self.pow((self.pow(X[i-1],2)-X[i]),2)+(X[i-1]-1)+self.pow((X[i]-1),2) return res def F5(self,X): res = 0. for x in X: res+=(xx-10self.cos(2self.pix)+10) return res
def __g(self,x1,x2):
res = 0.5+(self.pow(self.sin(self.sqrt(x1*x1+x2*x2)),2)/self.pow((1+0.001*(x1*x1+x2*x2)),2))
return res
def F6(self,X):
Dim = len(X)
res = 0.
for i in range(Dim-1):
res+=self.__g(X[i],X[i+1])
res+=self.__g(X[Dim-1],X[0])
return res
def __A(self, alpha,Dim,i):
res = self.pow(alpha,(i-1/Dim-1))
return res
def F8(self,X):
res = 0.
for x in X:
if(abs(x)<0.5):
y = x
else:
y = (round(2*x)/2)
res+=y*y - 10*(self.cos(2*self.pi*y)) + 10
return res
def F9(self,X):
Dim = len(X)
res = self.pow(self.sin(self.pi*(1+(X[0]-1/4))),2)
part2 = 0.
for i in range(1,Dim):
w = (1+(X[i-1]-1/4))
part2+=self.pow(w,2)*(1+10*self.pow(self.pi*w+1,2))
w = (1 + (X[Dim - 1] - 1 / 4))
res+=part2+(self.pow(w-1,2)*(1+self.pow(self.sin(2*self.pi*w),2)))
return res
def F11(self,X):
Dim = len(X)
res = 0.
for i in range(1,Dim+1):
res+=self.pow(1000000,(i-1/Dim-1))*X[i-1]*X[i-1]
return res
def F12(self,X):
res = 1000000*X[0]*X[0]
Dim = len(X)
for i in range(1,Dim):
res+=X[i]*X[i]
return res
def F13(self,X):
Dim = len(X)
part2 = 0.
part3 = 0.
for x in X:
part2+=x*x
part3+=self.cos(self.pi*2*x)
res = -20*self.exp(-0.2*self.sqrt((1/Dim)*part2))-self.exp((1/Dim)*part3)+20+self.e
return res
def F14(self,X):
kmax = 20;a=0.5;b=3
Dim = len(X)
part1 = 0.
for x in X:
temp = 0.
for i in range(kmax+1):
temp+=self.pow(a,i)*self.cos(2*self.pi*self.pow(b,i)*(x+0.5))
part1+=temp
part2 = Dim
temp=0.
for i in range(kmax+1):
temp += self.pow(a, i) * self.cos(2 * self.pi * self.pow(b, i) * 0.5)
part2*=temp
res = part1-part2
return res
def F15(self,X):
part1 = 0.
part2 = 1
Dim = len(X)
for i in range(1,Dim+1):
part1+=X[i-1]*X[i-1]/4000
part2*=self.cos(X[i-1]/self.sqrt(i))
res = part1-part2 +1
return res
def F16(self,X):
Dim = len(X)
part1 = 1
for i in range(1,Dim+1):
temp=0.
for j in range(1,33):
temp+=abs(self.pow(2,j)*X[i-1]-round(self.pow(2,j)*X[i-1]))/2**j
temp = self.pow(1+i*temp,(10/Dim**1.2))
part1*=temp
res = (10/Dim**2)*part1-(10/Dim**2)
return res
def F17(self,X):
Dim = len(X)
part1 = 0.
part2 = 0.
for x in X:
part1+=x*x
part2+=x
res = self.pow(abs(part1-Dim),0.25)+(0.5*part1+part2)/Dim + 0.5
return res
def F18(self,X):
Dim = len(X)
part1 = 0.
part2 = 0.
for x in X:
part1+=x*x
part2+=x
res = self.pow(abs(self.pow(part1,2)-self.pow(part2,2)),0.5)+(0.5*part1+part2)/Dim + 0.5
return res
def F20(self,X):
Dim = len(X)
part1 = 0.
for i in range(0,Dim-1):
s = self.sqrt(X[i]**2+X[i+1]**2)
part1+=self.sqrt(s)*(self.sin(50.0*s**0.2)+1)
res = self.pow((1/(Dim-1))*part1,2)
return res
``` - 我正在參與掘金技術社群創作者簽約計劃招募活動,點選連結報名投稿。
- 還在調API寫所謂的AI“女友”,嘮了嘮了,教你基於python咱們“new”一個(深度學習)
- Java前後端分離實戰Auto2.0使用者登入註冊--基本的使用者登入 郵箱驗證
- 卡爾曼濾波器(目標跟蹤一)(上)
- 手把手教你如何自制目標檢測框架(從理論到實現)
- 基於Python深度圖生成3D點雲
- Pandas基礎使用(機器學習基礎)
- CEC2017基礎函式說明Python版本
- 全國空氣質量爬取實戰
- 智慧演算法整合測試平臺V0.1實戰開發
- DDPG神經網路實戰(基於強化學習優化粒子群演算法)
- 關於強化學習優化粒子群演算法的論文解讀(全)
- 關於強化學習優化粒子群演算法的論文解讀(上)
- 基於多種群機制的PSO演算法(優化與探索三 *混合種群思想優化多種群與廣義PSO求解JSP)
- 基於多種群機制的PSO演算法Python實現(優化與探索二)
- 基於多種群機制的PSO演算法Python實現
- 520桌面手勢告白
- 嘿~瞎話一下,為啥要用Sigmoid?!